Free Access
Volume 32, Number 2, 1998
Page(s) 177 - 209
Published online 27 January 2017
  1. P. J. ARMSTRONG and C. O. FREDERICK, 1966, A mathematical representation of the multiaxial Bauschinger effect, C.E.G.B., Report RD/B/N 731. [Google Scholar]
  2. A. F. BOWER, 1989, Cyclic hardening properties of hard-drawn copper and rail steel, J. Mech. Phys. Solids, 37, pp. 455-470. [Google Scholar]
  3. H. BRÉZIS, 1972, Problèmes unilatéraux, J. Math. Pures et Appl., 51, pp. 1-168. [MR: 428137] [Zbl: 0237.35001] [Google Scholar]
  4. M. BROKATE, K. DRESSLER, and P. KREJČÍ, 1996, On the Mróz model, Eur. J. Appl. Math., 7, pp. 473-497. [MR: 1419644] [Zbl: 0857.73028] [Google Scholar]
  5. M. BROKATE, K. DRESSLER and P. KREJČÍ, 1996, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity, Eur. J. Mech. A/Solds, 15, pp. 705-737. [MR: 1412202] [Zbl: 0863.73022] [Google Scholar]
  6. M. BROKATE and J. SPREKELS, 1996, Hysteresis and phase transitions, Springer, New York. [MR: 1411908] [Zbl: 0951.74002] [Google Scholar]
  7. J.-L. CHABOCHE, 1989, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plasticity, 5, pp. 247-302. [Zbl: 0695.73001] [Google Scholar]
  8. J.-L. CHABOCHE, 1991, On some modifications of kinematic hardening to improve the description of ratchetting effects, Int. J. Plasticity, 7, pp. 661-678. [Google Scholar]
  9. J.-.L. CHABOCHE, 1994, Modeling of ratchetting: evaluation of various approaches, Eur. J. Mech., A/Solids, 13, pp. 501-518. [Google Scholar]
  10. C. C. CHU, 1984, A three dimensional model of anisotropic hardening in metals and its application to the analysis of sheet metal formability, J. Mech. Phys. Solids, 32, pp. 197-212. [Google Scholar]
  11. C. C. CHU, 1987, The analysis of multiaxial cyclic problems with an anisotropic hardening model, Int. J. Solids Structures, 23, pp. 567-579. [Google Scholar]
  12. G. DUVAUT and J. L. LIONS, 1976, Inequalities in mechanics and physics, Springer-Verlag, Berlin. French edition Dunod, Paris 1972. [MR: 521262] [Zbl: 0331.35002] [Google Scholar]
  13. K. GRÖGER, 1979, Initial value problems for elastoplastic and elasto-viscoplastic systems, in : Nonlinear Analysis, Function Spaces and Applications, eds. S. Fuclc and A Kufner, Teubner, Leipzig, pp. 95-127. [EuDML: 220893] [MR: 578911] [Zbl: 0442.73037] [Google Scholar]
  14. B. HALPHEN and Q. S. NGUYEN, 1975, Sur les matériaux standard généralises, J. de Mécanique, 14, pp. 39-63. [MR: 416177] [Zbl: 0308.73017] [Google Scholar]
  15. B. HALPHEN, 1976, L'accomodation des structures élastoplastiques à écrouissage cinématique, C. R. Acad. Sc. Paris, 283, pp. 799-802. [MR: 436712] [Zbl: 0357.73035] [Google Scholar]
  16. Y. JIANG and H. SEHITOGLU, 1994, Cyclic ratchetting of 1070 steel under multiaxial stress states, Int. J. Plasticity, 10, pp. 579-608. [MR: 1336972] [Google Scholar]
  17. Y. JIANG and H. SEHITOGLU, 1994, Multiaxial cyclic ratchetting under multiple step loading, Int. J. Plasticity, 10, pp. 849-870. [Google Scholar]
  18. Y. JIANG and H. SEHITOGLU, 1996, Comments on the Mroz multiple surface type plasticity models, Int. J. Solids Structures, to appear. [Zbl: 0900.73153] [Google Scholar]
  19. C. JOHNSON, 1978, On plasticity with hardening, J. Math. Anal. Appl. 62, pp. 325-336. [MR: 489198] [Zbl: 0373.73049] [Google Scholar]
  20. M. KAMLAH, M. KORZEŃ and CH. TSAKMAKIS, 1997, Uniaxial ratchetting in rate-independent plasticity laws, Acta Mechanica, 120, pp. 173-198. [MR: 1436472] [Zbl: 0907.73027] [Google Scholar]
  21. M. A. KRASNOSEL'SKII and A. V. POKROVSKII, 1989, Systems with hysteresis, Springer Verlag, Berlin Russian edition: Nauka, Moscow, 1983. [MR: 742931] [Google Scholar]
  22. P. KREJČÍ, 1991, Vector hysteresis models, Euro. Jnl of Applied Mathematics, 2, pp. 281-292. [MR: 1123144] [Zbl: 0754.73015] [Google Scholar]
  23. P. KREJČÍ, 1996, Hysteresis, convexity and dissipation in hyperbolic equations, Gakkotosho, Tokyo. [MR: 2466538] [Zbl: 1187.35003] [Google Scholar]
  24. J. LEMAITRE and J.-L. CHABOCHE, 1990, Mechanics of solid materials, Cambridge University Press, Cambridge 1990. French édition Dunod, Paris, 1985. [Zbl: 0743.73002] [Google Scholar]
  25. J.-L. LIONS, 1969, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  26. G. A. MAUGIN, 1992, The thermomechanics of plasticity and fracture, Cambridge University Press, Cambridge, 1992. [MR: 1173212] [Zbl: 0753.73001] [Google Scholar]
  27. E. MELAN, 1938, Zur Plastizität des räumlichen Kontinuums, Ingenieur-Archiv, 9, 116-126. [Zbl: 64.0840.01] [JFM: 64.0840.01] [Google Scholar]
  28. J. C. MOOSBRUGGER and D. L. McDOWELL, 1989, On a class of kinematic hardening rules for nonproportional cyclic plasticity, J. Eng. Mat. Techn., 111, pp. 87-98. [Google Scholar]
  29. Z. MRÓZ, 1967, On the description of anisotropic workhardening, J. Mech. Phys. Solids, 15, pp. 163-175. [Google Scholar]
  30. J. NEČS and I. HLAVÁČEK, 1981, Mathematical theory of elastic and elastoplastic bodies : An introduction, Elsevier, Amsterdam. [Zbl: 0448.73009] [Google Scholar]
  31. Q. S. NGUYEN, 1977, On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Int. J. Numer. Meth. Engng., 11, pp. 817, 832. [MR: 446041] [Zbl: 0366.73034] [Google Scholar]
  32. P. D. PANAGIOTOPOULOS, Inequality problems in mechanics and applications, Burkhauser, Basel. [Zbl: 0579.73014] [Google Scholar]
  33. W. PRAGER, 1949, Recent developments in the mathematical theory of plasticity, J. Appl. Phys., 20, pp. 235-241. [MR: 28760] [Zbl: 0034.26605] [Google Scholar]
  34. L. PRANDTL, 1928, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, ZAMM, 8, pp. 85-106. [JFM: 54.0847.04] [Google Scholar]
  35. R. TEMAM, 1985, Mathematical problems in plasticity, Gauthier-Villars, Paris. [MR: 711964] [Google Scholar]
  36. CH. TSAKMAKIS, 1987, Über inkrementelle Materialgleichungen zur Beschreibung groβer inelastischer Deformationen, Fortschritt-Berichte VDI Reihe 18, Nr. 36, VDI-Verlag, Düsseldorf. [Google Scholar]
  37. A. VISINTIN, 1987, Rheological models and hysteresis effects, Rend. Sem. Matem. Univ. Padova, 77, pp. 213-243. [EuDML: 108064] [MR: 904623] [Zbl: 0633.73001] [Google Scholar]
  38. 38] A. VISINTIN, 1994, Differential models of hysteresis, Springer-Verlag, Berlin. [MR: 1329094] [Zbl: 0820.35004] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you