Free Access
Issue
ESAIM: M2AN
Volume 32, Number 3, 1998
Page(s) 255 - 281
DOI https://doi.org/10.1051/m2an/1998320302551
Published online 27 January 2017
  1. W. ACHTZIGER. Truss topology design under multiple loading. DFG Report 367, Math. Institut, Univ. of Bayreuth, 1992.
  2. W. ACHTZIGER. Minimax compliance truss topology subject to multiple loadings. In M. BendsØe and C. Mota-Soares, editors, Topology optimization of trusses, pages 43-54. Kluwer Academic Press, Dortrecht, 1993. [MR: 1250189]
  3. W. ACHTZIGER, A. BEN-TAL, M. BENDSØE and J. ZOWE. Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering, 4: 315-345, 1992. [MR: 1196354] [Zbl: 0769.73054]
  4. G. ALLAIRE and R. KOHN. Optimal design for minimum weight and compliance in plane stress using extremal microstructures. European J. on Mechanics (A/Solids) 12: 839-878, 1993. [MR: 1343090] [Zbl: 0794.73044]
  5. K. J. BATHE and E. L. WILSON. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976. [Zbl: 0387.65069]
  6. A. BEN-TAL and M. BENDSØE. A new iterative method for optimal truss topology design. SIAM J. Optimization, 3: 322-358, 1993. [MR: 1215447] [Zbl: 0780.90076]
  7. A. BEN-TAL, M. BENDSØE and J. ZOWE. Optimization methods for truss geometry and topology design. Structural Optimization, 7: 141-159, 1994.
  8. A. BEN-TAL, I. YUZEFOVICH and M. ZIBULEVSKY. Penalty/barrier multiplier methods for minmax and constrained smooth convex programs. Research report 9/92, Optimization Laboratory, Technion-Israel Institute of Technology, Haifa, 1992.
  9. A. BEN-TAL and M. ZIBULEVSKY. Penalty/barrier multiplier methods: a new class of augmented lagrangian algorithms for large scale convex programming problems. SIAM J. Optimization, 7, 1997. [MR: 1443623] [Zbl: 0872.90068]
  10. M. BENDSØE, J. GUADES, R. HABER, P. PEDERSEN and J. TAYLOR. An analytical model to predict optimal material properties in the context of optimal structural design. J. Applied Mechanics, 61: 930-937, 1994. [MR: 1327483] [Zbl: 0831.73036]
  11. M. P. BENDSØE. Optimization of Structural Topology, Shape and Material, Springer-Verlag, Heidelberg, 1995. [MR: 1350791] [Zbl: 0822.73001]
  12. J. CEA. Lectures on Optimization. Springer-Verlag, Berlin, 1978. [Zbl: 0409.90050]
  13. P. G. CIARLET. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford, 1978. [MR: 520174] [Zbl: 0383.65058]
  14. I. EKELAND and R. TEMAM. Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. [MR: 463994] [Zbl: 0322.90046]
  15. E. J. HAUG and J. S. ARORA Applied Optimal Design. Wiley, New York, 1979.
  16. I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVÍŠEK Solution of Variational Inequalities in Mechanics. Springer-Verlag, New-York, 1988. [MR: 952855] [Zbl: 0654.73019]
  17. F. JARRE, M. KOČVARA and J. ZOWE. Interior point methods for mechanical design problems. SIAM J. Optimization. To appear. [Zbl: 0912.90231]
  18. A. KLARBRING, J. PETERSSON and M. RÖNNQUIST. Truss topology optimization involving unilateral contact. J. Optimization Theory and Applications, 87, 1995. [Zbl: 0841.73046]
  19. M. KOČVARA and J. ZOWE. How mathematics can help in design of mechanical structures. In. D.F. Griffiths and G.A. Watson, eds., Numerical Analysis 1995, Longman, Harlow, 1996, pp. 76-93. [Zbl: 0858.73059]
  20. J. PETERSSON On stiffness maximization of variable thickness sheet with unilateral contact. Quarterly of Applied Mathematics, 54: 541-550, 1996. [MR: 1402408] [Zbl: 0871.73046]
  21. J. PETERSSON and J. HASLINGER. An approximation theory for optimum sheet in unilateral contact. Quarterly of Applied Mathematics. To appear. [MR: 1622499] [Zbl: 0960.74051]
  22. J. PETERSSON and A. KLARBRING. Saddle point approach to stiffness optimization of discrete structures including unilateral contact. Control and Cybernetics, 3: 461-479, 1994. [MR: 1303365] [Zbl: 0820.73053]
  23. J. PETERSSON and M. PATRIKSSON. Topology optimization of sheets in contact by a subgradient method. International Journal for Numerical Methods in Engineerings. To appear. [MR: 1449228] [Zbl: 0890.73046]
  24. R. POLYAK. Modified barrier fonctions: Theory and methods. Mathematical Programming, 54: 177-222, 1992. [MR: 1158819] [Zbl: 0756.90085]
  25. R. T. ROCKAFELLAR A dual approach to solving nonlinear programming problems by unconstrained optimization. Mathematical Programming, 5: 354-373, 1973. [MR: 371416] [Zbl: 0279.90035]
  26. R. T. ROCKAFELLAR Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970. [MR: 274683] [Zbl: 0193.18401]
  27. P. TSENG and D. P. BERTSEKAS On the convergence of the exponential multiplier method for convex programming. Mathematical Programming, 60: 1-19, 1993. [MR: 1231274] [Zbl: 0783.90101]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you