Free Access
Volume 32, Number 3, 1998
Page(s) 255 - 281
Published online 27 January 2017
  1. W. ACHTZIGER. Truss topology design under multiple loading. DFG Report 367, Math. Institut, Univ. of Bayreuth, 1992. [Google Scholar]
  2. W. ACHTZIGER. Minimax compliance truss topology subject to multiple loadings. In M. BendsØe and C. Mota-Soares, editors, Topology optimization of trusses, pages 43-54. Kluwer Academic Press, Dortrecht, 1993. [MR: 1250189] [Google Scholar]
  3. W. ACHTZIGER, A. BEN-TAL, M. BENDSØE and J. ZOWE. Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering, 4: 315-345, 1992. [MR: 1196354] [Zbl: 0769.73054] [Google Scholar]
  4. G. ALLAIRE and R. KOHN. Optimal design for minimum weight and compliance in plane stress using extremal microstructures. European J. on Mechanics (A/Solids) 12: 839-878, 1993. [MR: 1343090] [Zbl: 0794.73044] [Google Scholar]
  5. K. J. BATHE and E. L. WILSON. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976. [Zbl: 0387.65069] [Google Scholar]
  6. A. BEN-TAL and M. BENDSØE. A new iterative method for optimal truss topology design. SIAM J. Optimization, 3: 322-358, 1993. [MR: 1215447] [Zbl: 0780.90076] [Google Scholar]
  7. A. BEN-TAL, M. BENDSØE and J. ZOWE. Optimization methods for truss geometry and topology design. Structural Optimization, 7: 141-159, 1994. [Google Scholar]
  8. A. BEN-TAL, I. YUZEFOVICH and M. ZIBULEVSKY. Penalty/barrier multiplier methods for minmax and constrained smooth convex programs. Research report 9/92, Optimization Laboratory, Technion-Israel Institute of Technology, Haifa, 1992. [Google Scholar]
  9. A. BEN-TAL and M. ZIBULEVSKY. Penalty/barrier multiplier methods: a new class of augmented lagrangian algorithms for large scale convex programming problems. SIAM J. Optimization, 7, 1997. [MR: 1443623] [Zbl: 0872.90068] [Google Scholar]
  10. M. BENDSØE, J. GUADES, R. HABER, P. PEDERSEN and J. TAYLOR. An analytical model to predict optimal material properties in the context of optimal structural design. J. Applied Mechanics, 61: 930-937, 1994. [MR: 1327483] [Zbl: 0831.73036] [Google Scholar]
  11. M. P. BENDSØE. Optimization of Structural Topology, Shape and Material, Springer-Verlag, Heidelberg, 1995. [MR: 1350791] [Zbl: 0822.73001] [Google Scholar]
  12. J. CEA. Lectures on Optimization. Springer-Verlag, Berlin, 1978. [Zbl: 0409.90050] [Google Scholar]
  13. P. G. CIARLET. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  14. I. EKELAND and R. TEMAM. Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. [MR: 463994] [Zbl: 0322.90046] [Google Scholar]
  15. E. J. HAUG and J. S. ARORA Applied Optimal Design. Wiley, New York, 1979. [Google Scholar]
  16. I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVÍŠEK Solution of Variational Inequalities in Mechanics. Springer-Verlag, New-York, 1988. [MR: 952855] [Zbl: 0654.73019] [Google Scholar]
  17. F. JARRE, M. KOČVARA and J. ZOWE. Interior point methods for mechanical design problems. SIAM J. Optimization. To appear. [Zbl: 0912.90231] [Google Scholar]
  18. A. KLARBRING, J. PETERSSON and M. RÖNNQUIST. Truss topology optimization involving unilateral contact. J. Optimization Theory and Applications, 87, 1995. [Zbl: 0841.73046] [Google Scholar]
  19. M. KOČVARA and J. ZOWE. How mathematics can help in design of mechanical structures. In. D.F. Griffiths and G.A. Watson, eds., Numerical Analysis 1995, Longman, Harlow, 1996, pp. 76-93. [Zbl: 0858.73059] [Google Scholar]
  20. J. PETERSSON On stiffness maximization of variable thickness sheet with unilateral contact. Quarterly of Applied Mathematics, 54: 541-550, 1996. [MR: 1402408] [Zbl: 0871.73046] [Google Scholar]
  21. J. PETERSSON and J. HASLINGER. An approximation theory for optimum sheet in unilateral contact. Quarterly of Applied Mathematics. To appear. [MR: 1622499] [Zbl: 0960.74051] [Google Scholar]
  22. J. PETERSSON and A. KLARBRING. Saddle point approach to stiffness optimization of discrete structures including unilateral contact. Control and Cybernetics, 3: 461-479, 1994. [MR: 1303365] [Zbl: 0820.73053] [Google Scholar]
  23. J. PETERSSON and M. PATRIKSSON. Topology optimization of sheets in contact by a subgradient method. International Journal for Numerical Methods in Engineerings. To appear. [MR: 1449228] [Zbl: 0890.73046] [Google Scholar]
  24. R. POLYAK. Modified barrier fonctions: Theory and methods. Mathematical Programming, 54: 177-222, 1992. [MR: 1158819] [Zbl: 0756.90085] [Google Scholar]
  25. R. T. ROCKAFELLAR A dual approach to solving nonlinear programming problems by unconstrained optimization. Mathematical Programming, 5: 354-373, 1973. [MR: 371416] [Zbl: 0279.90035] [Google Scholar]
  26. R. T. ROCKAFELLAR Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970. [MR: 274683] [Zbl: 0193.18401] [Google Scholar]
  27. P. TSENG and D. P. BERTSEKAS On the convergence of the exponential multiplier method for convex programming. Mathematical Programming, 60: 1-19, 1993. [MR: 1231274] [Zbl: 0783.90101] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you