Free Access
Issue
ESAIM: M2AN
Volume 32, Number 3, 1998
Page(s) 283 - 305
DOI https://doi.org/10.1051/m2an/1998320302831
Published online 27 January 2017
  1. S. C. BRENNER, L. R. SCOTT, The mathematical theory of finite element methods, Springer, New York e.a., 1994. [MR: 1278258] [Zbl: 0804.65101] [Google Scholar]
  2. F. BREZZI, M. FORTIN, Mixed and hybrid finite element methods, Springer, New York e.a., 1991. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  3. P. DEURING, Finite element methods for the Stokes system in exterior domains, Meth. Meth. Appl. Sci., 20 (1997), pp. 245-269. [MR: 1430495] [Zbl: 0870.76041] [Google Scholar]
  4. G. P. GALDI, An introduction to the mathematical theory of the Navier Stokes equations. Volume I. Lineanzed steady problems, Springer, New York e.a., 1994. [MR: 1284205] [Zbl: 0949.35004] [Google Scholar]
  5. V. GIRAULT, P.- A. RAVIART, Finite element methods for Navier-Stokes equations, Springer, Berlin e.a., 1986. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  6. C. I. GOLDSTEIN, The finite element method with nonuniform mesh sizes for unbounded domains, Math. Comp., 36 (1981), pp. 387-404. [MR: 606503] [Zbl: 0467.65058] [Google Scholar]
  7. C. I. Goldstein, Multigrid methods for elliptic problems in unbounded domains, SIAM J. Numer. Anal., 30 (1993), pp. 159-183. [MR: 1202661] [Zbl: 0772.65075] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you