Free Access
Issue
ESAIM: M2AN
Volume 32, Number 3, 1998
Page(s) 359 - 389
DOI https://doi.org/10.1051/m2an/1998320303591
Published online 27 January 2017
  1. V.I. AGOSHKOV, Poincaré-Steklov's Operators and Domain Decomposition Methods in Finite Dimensional Spaces, in Glowinski, R. et al. eds, Domain Decomposition Methods for Partial Differential Equations, SIAM Philadelphia, (1988), 73-112. [MR: 972513] [Zbl: 0683.65097] [Google Scholar]
  2. F. ASSOUS, P. Jr. CIARLET, J. SEGRÉ and E. SONNENDRÜCKER. In préparation. [Google Scholar]
  3. F. ASSOUS, P. Jr. CIARLET and E. SONNENDRÜCKER, Résolution des équations de Maxwell dans un domaine avec un coin rentrant. C. R. Acad. Sc. Paris Serie I 323 (1996) 203-208. [MR: 1402544] [Zbl: 0855.65131] [Google Scholar]
  4. F. ASSOUS, P. Jr. CIARLET and E. SONNENDRÜCKER, Résolution des équations de Maxwell dans un domaine 2D avec coins rentrants Partie I: Modélisation avec condition aux limites de type conducteur parfait, CEA, Technical Report, CEA-N-2813 (1996). [Google Scholar]
  5. F. ASSOUS, P. DEGOND, E. HEINTZÉ, P.-A. RAVIART and J. SEGRÉ, On a Finite Element Method for Solving the Three-Dimensional Maxwell Equations, J. Comput. Phys. 109 (1993), 222-237. [MR: 1253460] [Zbl: 0795.65087] [Google Scholar]
  6. I. BABUSKA, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  7. I. BABUSKA, R. B. KELLOG and PITKÄRANTA, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math., 33 (1979), 447-471. [EuDML: 132654] [MR: 553353] [Zbl: 0423.65057] [Google Scholar]
  8. I. BABUSKA and H.-S. OH, The p-Version of the Finite Element Method for Domains with Corners and for Infinite Domains, Numer. Methods Partial Differential Equations, 6 (1990), 371-392. [MR: 1087251] [Zbl: 0717.65084] [Google Scholar]
  9. F. BREZZI, On the existence uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO Anal. Numer. (1974), 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  10. W. CAI, H. C LEE and H.-S. OH, Coupling of Spectral Methods and the p-Version of the Finite Element Method for Ellitic Boundary Value Problems Containing Singularities, J. Comput. Phys. 108 (1993), 314-326. [MR: 1242954] [Zbl: 0790.65093] [Google Scholar]
  11. M. CESSENAT, Sur quelques opérateurs liés à l'équation de Helmholtz en coordonnées polaires, transformation H.K.L., C. R. Acad. Sci. Paris, Serie I 309 (1989), 25-30. [MR: 1004933] [Zbl: 0694.35040] [Google Scholar]
  12. M. CESSENAT, Résolution des problèmes de Helmholtz par séparation des variables en coordonnées polaires, C. R. Acad. Sci. Paris, Série I 309 (1989), 105-109. [MR: 1004950] [Zbl: 0688.35020] [Google Scholar]
  13. P. Jr. CIARLET, Tools for solving the div-curl problem with mixed boundary conditions in a polygonal domain. In preparation. [Google Scholar]
  14. P. Jr. CIARLET and J. ZOU, Finite Element Convergence for the Darwin Model to Maxwell's Equations, M2AN 7, 30(1996). [Zbl: 0887.65121] [Google Scholar]
  15. M. COSTABEL, A Remark on the Regularity of Solutions of Maxwell's Equations on Lipschitz Domains, Math. Meth. Appl. Sci. 12, 2 (1990), 365-368. [MR: 1048563] [Zbl: 0699.35028] [Google Scholar]
  16. M. COSTABEL, A Coercive Bilinear Form for Maxwell's Equations, J. Math. Anal. and Appl. 157, 2 (1991), 527-541. [MR: 1112332] [Zbl: 0738.35095] [Google Scholar]
  17. M. COSTABEL and M. DAUGE, Stable Asymptotics for Elliptic Systems on Plane Domains with Corners, Comm. PDE 19, 9 & 10 (1994), 1677-1726. [MR: 1294475] [Zbl: 0814.35024] [Google Scholar]
  18. C. L. COX and G. J. FIX, On the accuracy of least square methods in the presence of corner singularities, Comp. Math. Appl. 10, (1984), 463-471. [MR: 783520] [Zbl: 0573.65081] [Google Scholar]
  19. M. DAUGE, (1988), Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, 1341, Springer Verlag, Berlin. [MR: 961439] [Zbl: 0668.35001] [Google Scholar]
  20. G. J. FIX (1986), Singular finite element method, in D. L. Doyer, M. Y. Hussami and R. G. Voigt (eds), Proc. ICASE Finite Element Theory and Application Workshop, Hampton, Virginia, Springer Verlag, Berlin, pp. 50-66. [MR: 964480] [Zbl: 0727.73070] [Google Scholar]
  21. G. J. FIX, S. GULATI and G. I. WAKOFF, On the use of singular function with finite element approximation, J Comp. Phys. 13, (1973), 209-228. [MR: 356540] [Zbl: 0273.35004] [Google Scholar]
  22. P. GÉRARD and G. LEBEAU, Diffusion d'une onde par un coin, J. Amer. Math. Soc. 6 (1993), 341-424. [MR: 1157289] [Zbl: 0779.35063] [Google Scholar]
  23. V. GIRAULT and P.-A. RAVIART (1986), Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, Springer Verlag, Berlin. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  24. D. GIVOLI, L. RIVKIN and J. B. KELLER, A Finite Element Method for Domains with Corners, Int. J. Numer. Methods Eng. 35 (1992), 1329-1345. [MR: 1184244] [Zbl: 0768.73072] [Google Scholar]
  25. P. GRISVARD (1985), Elliptic Problems in nonsmooth domains, Monographs and studies in Mathematics, 24, Pitman, London. [MR: 775683] [Zbl: 0695.35060] [Google Scholar]
  26. P. GRISVARD (1992), Singularities in boundary value problems, RMA 22, Masson, Paris. [MR: 1173209] [Zbl: 0766.35001] [Google Scholar]
  27. T. J. R. HUGHES and J. E. AKIN, Techniques for developing "special" finite element shape functions with particular reference to singularities, Int. J. Numer. Methods Eng. 15 (1980), 733-751. [MR: 580355] [Zbl: 0428.73074] [Google Scholar]
  28. J. B. KELLER and D. GIVOLI, An Exact Non-Reflecting Boundary Condition, J. Comp. Phys. 82 (1988), 172-192. [MR: 1005207] [Zbl: 0671.65094] [Google Scholar]
  29. O. LAFITTE, The wave diffracted by a wedge with mixed boundary conditions, SIAM Annual Meeting, Stanford (1997). [MR: 1635365] [Zbl: 0963.78018] [Google Scholar]
  30. O. LAFITTE, Diffraction par une arête d'une onde électromagnétique normale à l'arête, in préparation. [Google Scholar]
  31. J.-L. LIONS and E. MAGENES (1968), Problèmes aux Limites Non Homogènes et Applications, Dunod, Paris. [Zbl: 0165.10801] [Google Scholar]
  32. M. MOUSSAOUI, Espaces H(div, curl, Ω) dans un polygone plan. C. R. Acad. Sc. Paris, Série I 322 (1996) 225-229. [MR: 1378257] [Zbl: 0852.46034] [Google Scholar]
  33. J. C. NÉDÉLEC, Mixed Finite Elements in R3, Numer. Math. 35 (1980), 315-341. [EuDML: 186293] [MR: 592160] [Zbl: 0419.65069] [Google Scholar]
  34. D. PATHRIA and E. KARNIADAKIS, Spectral Element Methods for Elliptic Problems in Nonsmooth Domains, J. Comput. Phys. 122 (1995), 83-95. [MR: 1358523] [Zbl: 0844.65082] [Google Scholar]
  35. C. WEBER, A local compactness theorem for Maxwell's equations, Math. Meth. Appl. Sci. 2 (1980), 12-25. [MR: 561375] [Zbl: 0432.35032] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you