Free Access
Volume 32, Number 5, 1998
Page(s) 521 - 537
Published online 27 January 2017
  1. I. BABUŠKA, Y. LI and K. L. JERINA, Rehability of computational analysis of plasticity problems, In Non-linear Computational Mechanics, P. Wriggers and W. Wagner Eds, Springer-verlag, 1991. [Google Scholar]
  2. I. BABUŠKA and P. SHI, A continuous Galerkin method in one dimensional plasticity, in preparation. [Google Scholar]
  3. P. BENILAN, M. G. GRANDALL and P. SACKS, Some Ll existence and dependence results for semilinear elliptic equationsunder non linear boundary conditions, Appl. Math. Optim. Vol. 17. 1988, pp. 203-224. [MR: 922980] [Zbl: 0652.35043] [Google Scholar]
  4. G. DUVAULT and J. L. LIONS, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. [MR: 600341] [Zbl: 0331.35002] [Google Scholar]
  5. I. EKELAND and R. TEMAM, Convex analysis and variational problems, North-Holland, 1976. [MR: 463994] [Zbl: 0322.90046] [Google Scholar]
  6. W. HAN and B. D. REDDY, Computational plasticity: the variational basis and numerical analysis, Computational Mechanics Advances, 2, No. 2, 1995. [MR: 1361227] [Zbl: 0847.73078] [Google Scholar]
  7. I. HLAVÁČEK, J. HASLINGER, J. NEČAS and J. LOVIŠEK, Solutions of variational inequalities in mechanics, Springer-Verlag, 1988. [MR: 952855] [Zbl: 0654.73019] [Google Scholar]
  8. C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pure et Appl., 55, pp. 431-444 (1976). [MR: 438867] [Zbl: 0351.73049] [Google Scholar]
  9. C. JOHNSON, On plasticity with hardening, J. Math. Anal. Appl., 62, pp. 333-344 (1978). [MR: 489198] [Zbl: 0373.73049] [Google Scholar]
  10. M. A. KRASNOSEL'SKII and A. V. POKROVSKII, Systems with Hysteresis (in Russian), Nauka, Moscow, 1983 (English edition: Springer 1989). [MR: 987431] [Google Scholar]
  11. P. KREJĆĬ, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Springer, 1996. [MR: 2466538] [Zbl: 1187.35003] [Google Scholar]
  12. Y. LI and I. BABUŠKA, A convergence analysis of an H-version finite element method with high order elements for two dimensional elasto-plastic problems, SIAM J. Numer. Anal., to appear. [MR: 1451111] [Zbl: 0879.73070] [Google Scholar]
  13. J. LUBLINER, Plasticity Theory, Macmillan Publishing Company, New York, 1990. [Zbl: 0745.73006] [Google Scholar]
  14. J. LEMAITRE and J. L. CHABOCHE, Mechanics of Solid Materials, Cambridge University Press, 1985. [Zbl: 0743.73002] [Google Scholar]
  15. G. MAUGIN, The Thermodynamics of Plasticity and Fracture, Cambridge University Press, 1992. [MR: 1173212] [Zbl: 0753.73001] [Google Scholar]
  16. A. VISINTIN, Differential Models of Hysteresis, Springer, 1994. [MR: 1329094] [Zbl: 0820.35004] [Google Scholar]
  17. M. ZYZCKOWSKI, Combined Loading in the Theory of Plasticity, PWN-Polish Scientific Publisher, Warszawa, 1981. [Zbl: 0497.73036] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you