Free Access
Issue
ESAIM: M2AN
Volume 32, Number 5, 1998
Page(s) 539 - 577
DOI https://doi.org/10.1051/m2an/1998320505391
Published online 27 January 2017
  1. R. E. BANK, T. F. DUPONT, H. YSERENTANT, The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. [EuDML: 133245] [MR: 932709] [Zbl: 0645.65074] [Google Scholar]
  2. S. BIRINGEN and A. HUSER, Calculation of two-dimensional shear-driven cavity flows at high Reynolds numbers, Int J. for Num. Meth. in Fluids, vol. 14, 1087-1109 (1992). [Zbl: 0753.76116] [Google Scholar]
  3. M. H. CARPENTER, D. GOTTLIEB and S. ABARBANEL, Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems Methodology and Application to High-Order Compact Schemes, ICASE Preprint series. [MR: 1275021] [Zbl: 0832.65098] [Google Scholar]
  4. B. COCKBURN and C. W. SHU, Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. [MR: 1275104] [Zbl: 0805.65085] [Google Scholar]
  5. J. P. CHEHAB, Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math. 21, 9-42, (1996). [MR: 1418694] [Zbl: 0853.76044] [Google Scholar]
  6. J. P. CHEHAB, Incremental Unknowns Method and Compact Schemes, M2AN, 32, 1, 1998, 51-83. [EuDML: 193867] [MR: 1619593] [Zbl: 0914.65110] [Google Scholar]
  7. J. P. CHEBAB and R. TEMAM, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). [MR: 1325394] [Zbl: 0828.65124] [Google Scholar]
  8. J. P. CHEBAB, A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, Modélisation Mathématique et Analyse Numérique (M2AN), Vol. 29, 4, 451-475, 1995. [EuDML: 193781] [MR: 1346279] [Zbl: 0836.65114] [Google Scholar]
  9. M. CHEN, A. MIRANVILLE and R. TEMAM, Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3 (1995), 1-15. [MR: 1384185] [Google Scholar]
  10. M. CHEN and R. TEMAM, Incremental Unknows for Solving Partial Differential Equations, Numerische Matematik, Springer Verlag, 59, 1991, 255-271. [EuDML: 133548] [MR: 1106383] [Zbl: 0712.65103] [Google Scholar]
  11. M. CHEN and R. TEMAM, Incremental Unknows in Finite Differences Condition Number of the Matrix, SIAM J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. [MR: 1211799] [Zbl: 0773.65080] [Google Scholar]
  12. M. CHEN and R. TEMAM, Non Linear Galerkin Method in the Finite Difference case and Wavelet like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. [EuDML: 133706] [MR: 1206665] [Zbl: 0798.65093] [Google Scholar]
  13. A. DEBUSSCHE, T. DUBOIS and R. TEMAM, The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulation of Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics, 7, 4, 1995, 279-315. [Zbl: 0838.76060] [Google Scholar]
  14. T. DUBOIS and A. MIRANVILLE, Existence and uniqueness results for a velocity formulation of Navier Stokes equations in a Channel, Applicable Analysis, 55, 1994, 103-138. [MR: 1379647] [Zbl: 0833.35001] [Google Scholar]
  15. J. KIM and P. MOIN, Numerical investigation of turbulent channel flow, J. Fluid Mech. (1982, vol. 118, 341-377. [Zbl: 0491.76058] [Google Scholar]
  16. S. K. LELE, Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 1992, 16-42. [MR: 1188088] [Zbl: 0759.65006] [Google Scholar]
  17. M. MARION and R. TEMAM, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1989, 1139-1157. [MR: 1014878] [Zbl: 0683.65083] [Google Scholar]
  18. M. MARION and R. TEMAM, Nonlinear Galerkin Methods; The Finite elements case, Numerische Mathematik, 57, 1990, 205-226. [EuDML: 133445] [MR: 1057121] [Zbl: 0702.65081] [Google Scholar]
  19. J. SHEN, Hopf bifurcation of the unsteady regularized driven cavity flows, J. Comput. Phys. Vol. 95, 228-245 (1991). [Zbl: 0725.76059] [Google Scholar]
  20. R. TEMAM, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal. 21, 1990, 154-178. [MR: 1032732] [Zbl: 0715.35039] [Google Scholar]
  21. R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, Springer Verlag, 1988, 68. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]
  22. H. A. VAN DER VORST, Bi-CGSTAB a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 1992, 631-644. [MR: 1149111] [Zbl: 0761.65023] [Google Scholar]
  23. H. YSERENTANT, On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. [EuDML: 133143] [MR: 853662] [Zbl: 0608.65065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you