Free Access
Volume 32, Number 5, 1998
Page(s) 631 - 649
Published online 27 January 2017
  1. R. E. BANK, D. J. ROSE, Some error estimates for the box method, SIAM J. Numer. Anal, 24, 4, 1987, 777-787. [MR: 899703] [Zbl: 0634.65105] [Google Scholar]
  2. J. BARANGER, J. F. MAÎTRE, F. OUDIN, Connection between finite volume and mixed finite element methods, Math. Model. and Numer. Anal. (M2AN), to appear. [EuDML: 193811] [MR: 1399499] [Zbl: 0857.65116] [Google Scholar]
  3. D. BRAESS, Finite Elemente, Springer Lehrbuch, 1991. [Zbl: 0754.65084] [Google Scholar]
  4. S. C. BRENNER, L. R. SCOTT, The mathematical theory of finite element methods, Texts in Applied Mathematics 15, Springer. [Zbl: 0804.65101] [Google Scholar]
  5. F. BREZZI, M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer Series in Comp. Math., 15, Springer Verlag, New-York, 1991. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  6. F. CASIER, H. DECONNINCK, C. HIRSCH, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations, AIAA-83-0126, 1983. [Google Scholar]
  7. J. J. CHATTOT, S. MALET, A "box-scheme" for the Euler equations, Lecture Notes in Math., 1270, Springer-Verlag, 1986, 52-63. [MR: 910106] [Zbl: 0626.65088] [Google Scholar]
  8. B. COURBET, Schémas boîte en réseau triangulaire, ONERA, 1992, unpublished. [Google Scholar]
  9. B. COURBET, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale, n° 4, 1990, 21-46. [Zbl: 0708.76105] [Google Scholar]
  10. B. COURBET, Étude d'une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale, n° 5, 1991, 31-44. [Google Scholar]
  11. M. CROUZEIX, P. A. RAVIART, Conforming and non conforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O. 7, 1973, R-3, 33-76. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  12. P. EMONOT, Méthodes de volumes-éléments-finis: Application aux équations de Navier-Stokes et résultats de convergence, Thèse de l'Université de Lyon 1, France 1992. [Google Scholar]
  13. G. FAIRWEATHER, R. D. SAYLOR, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. Sci. Stat. Comput., 12, 1, 1991, 127-144. [MR: 1078800] [Zbl: 0722.65062] [Google Scholar]
  14. M. FARHLOUL, M. FORTIN, A new mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal., 30, 4, 1993, 971-990. [MR: 1231323] [Zbl: 0777.76051] [Google Scholar]
  15. W. HACKBUSCH, On first and second order box schemes, Computing, 41, 1989, 277-296. [MR: 993825] [Zbl: 0649.65052] [Google Scholar]
  16. C. JOHNSON, Adaptive finite element method for diffusion and convection problems, Comp. Meth. in Appl. Mech. Eng., 82, 1990, 301-322. [MR: 1077659] [Zbl: 0717.76078] [Google Scholar]
  17. H. B. KELLER, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard éd., Academic Press, New-York, 1971, 327-350. [MR: 277129] [Zbl: 0243.65060] [Google Scholar]
  18. P. C. MEEK, J. NORBURY, Nonlinear moving boundary problems and a Keller box scheme, SIAM J. Numer. Anal., 21, 5, 1984, 883-893. [MR: 760623] [Zbl: 0558.65087] [Google Scholar]
  19. R. A. NICOLAIDES, The covolume approach to Computing incompressible flows, Incompressible Comp. Fluid Dynamics, M. P. Gunzberger, R. A. Nicolaides Ed., 1993, Cambridge Univ. Press. [Zbl: 1189.76392] [Google Scholar]
  20. R. A. NICOLAIDES, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 1992, 32-56. [MR: 1149083] [Zbl: 0745.65063] [Google Scholar]
  21. R. A. NICOLAIDES, X. WU, Covolume solutions of three dimensional div-curl equations, ICASE Report 95-4. [Zbl: 0889.35006] [Google Scholar]
  22. B. J. NOYE, Some three-level finite difference methods for simulating advection in fluids, Computers and Fluids, 19, 1991, 119-140. [MR: 1087166] [Zbl: 0721.76053] [Google Scholar]
  23. P. A. RAVIART, J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Math, 606, Springer-Verlag, 1977, 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  24. S. F. WORNOM, Application of compact difference schemes to the conservative Euler equations for one-dimensional flow, NASA TM 8326. [Zbl: 0563.76023] [Google Scholar]
  25. S. F. WORNOM, A two-point difference scheme for Computing steady-state solutions to the conservative one-dimensional Euler equations, Computers and Fluids, 12, 1, 1984, 11-30. [Zbl: 0563.76023] [Google Scholar]
  26. S. F. WORNOM, M. M. HAFEZ, Implicit conservative schemes for the Euler equations, AIAA J., 24, 2, 1986, 215-233. [MR: 825091] [Zbl: 0591.76108] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you