Free Access
Volume 32, Number 6, 1998
Page(s) 747 - 761
Published online 27 January 2017
  1. G. AMIEZ, P. A. GREMAUD, On a numerical approach to Stefan-like problems, Numer. Math. 59, 71-89 (1991). [EuDML: 133540] [MR: 1103754] [Zbl: 0731.65107] [Google Scholar]
  2. D. R. ATTHEY A Finite Difference Scheme for Melting Problems, J. Inst. Math. Appl. 13, 353-366 (1974). [MR: 351295] [Google Scholar]
  3. L. A. BAUGHMAN, N. J. WALKINGTON, Co-volume methods for degenerate parabolic problems, Numer. Math. 64, 45-67 (1993). [EuDML: 133696] [MR: 1191322] [Zbl: 0797.65075] [Google Scholar]
  4. A. E. BERGER, H. BREZIS, J. C. W. ROGERS, A Numerical Method for Solving the Problem u1 - Δf(u) = 0, RAIRO Numerical Analysis, Vol. 13, 4, 297-312 (1979). [EuDML: 193344] [MR: 555381] [Zbl: 0426.65052] [Google Scholar]
  5. M. BERTSCH, R. KERSNER, L. A. PELETIER, Positivity versus localization in degenerate diffusion equations, Nonlinear Analysis TMA, Vol. 9, 9, 987-1008 (1995). [MR: 804564] [Zbl: 0596.35073] [Google Scholar]
  6. J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM J. Numer. Anal., 12, 464-488 (1975). IAM J. Numer. Anal., 12, 464-488 (1975). [MR: 391741] [Zbl: 0272.65101] [Google Scholar]
  7. M. GUEDDA, D. HILHORST, M. A. PELETIER, Disappearing interfaces in nonlinear diffusion, to appear in Advances in Mathematical Sciences and Applications. [MR: 1476273] [Zbl: 0891.35071] [Google Scholar]
  8. R. HERBIN, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Num. Meth. P.D.E., 165-173 (1995). [MR: 1316144] [Zbl: 0822.65085] [Google Scholar]
  9. S. L. KAMENOMOSTSKAJA On the Stefan problem, Mat. Sb. 53(95), 489-514 (1961 in Russian). [MR: 141895] [Zbl: 0102.09301] [Google Scholar]
  10. O. A. LADYŽENSKAJA, V. A. SOLONNIKOV, N. N. URAL'CEVA, Linear and Quasilinear Equations of Parabolic Type, Transl. of Math. Monographs, 23 (1968). [MR: 241822] [Zbl: 0174.15403] [Google Scholar]
  11. A. M. MEIRMANOV, The Stefan Problem, Walter de Gruyter Ed., New York (1992). [MR: 1154310] [Zbl: 0751.35052] [Google Scholar]
  12. G. H. MEYER, Multidimensional Stefan Problems, SIAM J. Num. Anal., 10, 522-538 (1973). [MR: 331807] [Zbl: 0256.65054] [Google Scholar]
  13. R. H. NOCHETTO, Finite Element Methods for Parabolic Free Boundary Problems, Advances in Numerical Analysis, Vol. I: Nonlinear Partial Differential Equations and Dynamical Systems, W. Light ed., Oxford University Press, 34-88 (1991). [MR: 1138471] [Zbl: 0733.65089] [Google Scholar]
  14. O. A. OLEINIK, A method of solution of the general Stefan Problem, Sov. Math. Dokl. 1, 1350-1354 (1960). [MR: 125341] [Zbl: 0131.09202] [Google Scholar]
  15. C. VERDI, Numerical aspects of parabolic free boundary and hysteresis problems, Phase Transitions and Hysteresis, A. Visinitin ed., Springer-Verlag, 213-284 (1994). [MR: 1321834] [Zbl: 0819.35155] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you