Free Access
Issue
ESAIM: M2AN
Volume 32, Number 6, 1998
Page(s) 747 - 761
DOI https://doi.org/10.1051/m2an/1998320607471
Published online 27 January 2017
  1. G. AMIEZ, P. A. GREMAUD, On a numerical approach to Stefan-like problems, Numer. Math. 59, 71-89 (1991). [EuDML: 133540] [MR: 1103754] [Zbl: 0731.65107]
  2. D. R. ATTHEY A Finite Difference Scheme for Melting Problems, J. Inst. Math. Appl. 13, 353-366 (1974). [MR: 351295]
  3. L. A. BAUGHMAN, N. J. WALKINGTON, Co-volume methods for degenerate parabolic problems, Numer. Math. 64, 45-67 (1993). [EuDML: 133696] [MR: 1191322] [Zbl: 0797.65075]
  4. A. E. BERGER, H. BREZIS, J. C. W. ROGERS, A Numerical Method for Solving the Problem u1 - Δf(u) = 0, RAIRO Numerical Analysis, Vol. 13, 4, 297-312 (1979). [EuDML: 193344] [MR: 555381] [Zbl: 0426.65052]
  5. M. BERTSCH, R. KERSNER, L. A. PELETIER, Positivity versus localization in degenerate diffusion equations, Nonlinear Analysis TMA, Vol. 9, 9, 987-1008 (1995). [MR: 804564] [Zbl: 0596.35073]
  6. J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM J. Numer. Anal., 12, 464-488 (1975). IAM J. Numer. Anal., 12, 464-488 (1975). [MR: 391741] [Zbl: 0272.65101]
  7. M. GUEDDA, D. HILHORST, M. A. PELETIER, Disappearing interfaces in nonlinear diffusion, to appear in Advances in Mathematical Sciences and Applications. [MR: 1476273] [Zbl: 0891.35071]
  8. R. HERBIN, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Num. Meth. P.D.E., 165-173 (1995). [MR: 1316144] [Zbl: 0822.65085]
  9. S. L. KAMENOMOSTSKAJA On the Stefan problem, Mat. Sb. 53(95), 489-514 (1961 in Russian). [MR: 141895] [Zbl: 0102.09301]
  10. O. A. LADYŽENSKAJA, V. A. SOLONNIKOV, N. N. URAL'CEVA, Linear and Quasilinear Equations of Parabolic Type, Transl. of Math. Monographs, 23 (1968). [MR: 241822] [Zbl: 0174.15403]
  11. A. M. MEIRMANOV, The Stefan Problem, Walter de Gruyter Ed., New York (1992). [MR: 1154310] [Zbl: 0751.35052]
  12. G. H. MEYER, Multidimensional Stefan Problems, SIAM J. Num. Anal., 10, 522-538 (1973). [MR: 331807] [Zbl: 0256.65054]
  13. R. H. NOCHETTO, Finite Element Methods for Parabolic Free Boundary Problems, Advances in Numerical Analysis, Vol. I: Nonlinear Partial Differential Equations and Dynamical Systems, W. Light ed., Oxford University Press, 34-88 (1991). [MR: 1138471] [Zbl: 0733.65089]
  14. O. A. OLEINIK, A method of solution of the general Stefan Problem, Sov. Math. Dokl. 1, 1350-1354 (1960). [MR: 125341] [Zbl: 0131.09202]
  15. C. VERDI, Numerical aspects of parabolic free boundary and hysteresis problems, Phase Transitions and Hysteresis, A. Visinitin ed., Springer-Verlag, 213-284 (1994). [MR: 1321834] [Zbl: 0819.35155]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you