Free Access
Issue |
ESAIM: M2AN
Volume 32, Number 6, 1998
|
|
---|---|---|
Page(s) | 763 - 772 | |
DOI | https://doi.org/10.1051/m2an/1998320607631 | |
Published online | 27 January 2017 |
- A. A. ARSEN'EV and O. E. BURYAK, " On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation". Math. USSR Sbornik, 69 (2), 465-478 (1991). [MR: 1055522] [Zbl: 0724.35090] [Google Scholar]
- E. A. CARLEN, E. GABETTA, G. TOSCANI, " Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas", to appear on Comm. Math. Phys. (1997). [MR: 1669689] [Zbl: 0927.76088] [Google Scholar]
- C. CERCIGNANI, The Boltzmann equation and its applications. Springer, New York (1988). [MR: 1313028] [Zbl: 0646.76001] [Google Scholar]
- P. DEGOND and B. LUCQUIN-DESREUX, " The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case", Math. Mod. Meth. in appl. Sci., 2 (2), 167-182 (1992). [MR: 1167768] [Zbl: 0755.35091] [Google Scholar]
- L. DESVILLETTES, " On asymptotics of the Boltzmann equation when the collisions become grazing", Transp. theory and stat. phys., 21 (3), 259-276 (1992). [MR: 1165528] [Zbl: 0769.76059] [Google Scholar]
- L. DESVILLETTES, " About the regularizing properties of the non-cut-off Kac equation", Comm. Math. Phys., 168 (2), 417-440 (1995). [MR: 1324404] [Zbl: 0827.76081] [Google Scholar]
- E. GABETTA, L. PARESCHI, " About the non cut-off Kac equation: Uniqueness and asymptotic behaviour", Comm. Appl. Nonlinear Anal., 4, 1-20 (1997). [MR: 1425012] [Zbl: 0873.45006] [Google Scholar]
- E. GABETTA, G. TOSCANI, B. WENNBERG, " Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation", J. Stat. Phys. 81, 901-934 (1995). [MR: 1361302] [Zbl: 1081.82616] [Google Scholar]
- T. GOUDON, " On the Boltzmann equation and its relations to the Landau-Fokker-Planck equation: influence of grazing collisions". To appear in C. R. Acad. Sci., 1997. [Zbl: 0882.76079] [Google Scholar]
- M. KAC, Probability and related topics in the physical sciences, New York (1959). [MR: 102849] [Zbl: 0087.33003] [Google Scholar]
- P. L. LIONS, " On Boltzmann and Landau equations", Phil. Trans. R. Soc. Lond., A(346), 191-204 (1994). [MR: 1278244] [Zbl: 0809.35137] [Google Scholar]
- P. L. LIONS, G. TOSCANI, " A sthrenghtened central limit theorem for smooth densities", J. Funct. Anal. 128, 148-167 (1995). [MR: 1322646] [Zbl: 0822.60018] [Google Scholar]
- J. NASH, " Continuity of solutions of parabolic and elliptic equations", Amer. J. Math. 80, 931-957 (1958). [MR: 100158] [Zbl: 0096.06902] [Google Scholar]
- G. TOSCANI, " On regularity and asymptotic behaviour of a spatially homogeneous Maxwell gas". Rend. Circolo Mat. Palermo, Serie II, Suppl. 45, 649-622 (1996). [MR: 1461111] [Zbl: 0893.76081] [Google Scholar]
- G. TOSCANI, " Sur l'inégalité logarithmique de Sobolev", To appear in C. R. Acad. Sci., 1997. [MR: 1447044] [Zbl: 0905.46018] [Google Scholar]
- C. VILLANI, " On the Landau equation: weak stability, global existence", Adv. Diff. Eq. 1 (5), 793-818 (1996). [MR: 1392006] [Zbl: 0856.35020] [Google Scholar]
- C. VILLANI, " On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations". [Zbl: 0912.45011] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.