Free Access
Volume 34, Number 1, January/February 2000
Page(s) 183 - 200
Published online 15 April 2002
  1. Y. Achdou, R. Glowinski and O. Pironneau, Tuning the mesh of a mixed method for the stream function-vorticity formulation of the Navier-Stokes equations. Numer. Math. 63 (1992) 145-163. [CrossRef] [MathSciNet]
  2. I. Babuska, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef]
  3. C. Bernardi, Méthodes d'éléments finis mixtes pour les équations de Navier-Stokes. Thèse de 3e Cycle, Université de Paris VI, France (1979).
  4. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
  5. F. El Dabaghi and O. Pironneau, Stream vectors in three dimensional aerodynamics. Numer. Math. 48 (1986) 561-589. [CrossRef] [MathSciNet]
  6. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986).
  7. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. [CrossRef] [MathSciNet]
  8. P. Neittaanmaki and M. Krizek, in Efficient Solution of Elliptic Systems, Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domain. Notes in Numerical Fluid Mechanics, Vol. 10, W. Hachbush Ed., Vieweg Publishing, Wiesbaden, Germany (1984); see also Appl. Math. 29 (1984) 272-285.
  9. L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser, Basel (1993).
  10. L. Quartapelle and A. Muzzio, Decoupled solution of vector Poisson equations with boundary condition coupling, in Computional Fluid Dynamics, G. de Vahl Davis and C. Fletcher Eds., Elsevier Science Publishers B.V., North-Holland (1988) 609-619.
  11. L. Quartapelle, V. Ruas and J. Zhu, Uncoupled solution of the three-dimensional vorticity-velocity equations. ZAMP 49 (1998) 384-400. [CrossRef] [MathSciNet]
  12. V. Ruas, L. Quartapelle and J. Zhu, A symmetrized velocity-vorticity formulation of the three-dimensional Stokes system. C.R. Acad. Sci. Paris Sér. IIb 323 (1996) 819-824.
  13. G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New York (1973).
  14. J. Zhu, A.F.D. Loula and L. Quartapelle, A vector Poisson problem with coupling boundary conditions in a Lipschitz 2D domain, Research Report, Laboratório Nacional de Computaç ao Científica, CNPq, N0 30 (1997).
  15. J. Zhu, A. F. D. Loula and L. Quartapelle, Finite element solution of vector Poisson equation with a coupling boundary condition. Numer. Methods Partial Differential Eq. 16 (2000).
  16. J. Zhu, L. Quartapelle and A.F.D. Loula, Uncoupled variational formulation of a vector Poisson problem. C.R. Acad. Sci. Paris Sér. I 323 (1996) 971-976.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you