Free Access
Volume 34, Number 1, January/February 2000
Page(s) 183 - 200
Published online 15 April 2002
  1. Y. Achdou, R. Glowinski and O. Pironneau, Tuning the mesh of a mixed method for the stream function-vorticity formulation of the Navier-Stokes equations. Numer. Math. 63 (1992) 145-163. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuska, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef] [Google Scholar]
  3. C. Bernardi, Méthodes d'éléments finis mixtes pour les équations de Navier-Stokes. Thèse de 3e Cycle, Université de Paris VI, France (1979). [Google Scholar]
  4. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  5. F. El Dabaghi and O. Pironneau, Stream vectors in three dimensional aerodynamics. Numer. Math. 48 (1986) 561-589. [CrossRef] [MathSciNet] [Google Scholar]
  6. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  7. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Neittaanmaki and M. Krizek, in Efficient Solution of Elliptic Systems, Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domain. Notes in Numerical Fluid Mechanics, Vol. 10, W. Hachbush Ed., Vieweg Publishing, Wiesbaden, Germany (1984); see also Appl. Math. 29 (1984) 272-285. [Google Scholar]
  9. L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser, Basel (1993). [Google Scholar]
  10. L. Quartapelle and A. Muzzio, Decoupled solution of vector Poisson equations with boundary condition coupling, in Computional Fluid Dynamics, G. de Vahl Davis and C. Fletcher Eds., Elsevier Science Publishers B.V., North-Holland (1988) 609-619. [Google Scholar]
  11. L. Quartapelle, V. Ruas and J. Zhu, Uncoupled solution of the three-dimensional vorticity-velocity equations. ZAMP 49 (1998) 384-400. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. Ruas, L. Quartapelle and J. Zhu, A symmetrized velocity-vorticity formulation of the three-dimensional Stokes system. C.R. Acad. Sci. Paris Sér. IIb 323 (1996) 819-824. [Google Scholar]
  13. G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New York (1973). [Google Scholar]
  14. J. Zhu, A.F.D. Loula and L. Quartapelle, A vector Poisson problem with coupling boundary conditions in a Lipschitz 2D domain, Research Report, Laboratório Nacional de Computaç ao Científica, CNPq, N0 30 (1997). [Google Scholar]
  15. J. Zhu, A. F. D. Loula and L. Quartapelle, Finite element solution of vector Poisson equation with a coupling boundary condition. Numer. Methods Partial Differential Eq. 16 (2000). [Google Scholar]
  16. J. Zhu, L. Quartapelle and A.F.D. Loula, Uncoupled variational formulation of a vector Poisson problem. C.R. Acad. Sci. Paris Sér. I 323 (1996) 971-976. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you