Free Access
Volume 34, Number 1, January/February 2000
Page(s) 47 - 62
Published online 15 April 2002
  1. H. Blum, S. Lisky and R. Rannacher, A domain splitting algorithm for parabolic problems. Computing 49 (1992) 11-23. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Braess, W. Dahmen and Chr. Wieners, A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Chen and R.D. Lazarov, Domain splitting algorithm for mixed finite element approximations to parabolic problems. East-West J. Numer. Math. 4 (1996) 121-135. [MathSciNet] [Google Scholar]
  4. Z. Chen and J. Zou, Finite element methods and their convergence analysis for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175-202. [CrossRef] [MathSciNet] [Google Scholar]
  5. W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart (1986). [Google Scholar]
  6. W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated microstructures. Numer. Math. 75 (1997) 447-472. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Haller, Composite materials of shape-memory alloys: micromechanical modelling and homogenization (in German). Ph.D. thesis, Technische Universitt Mnchen (1997). [Google Scholar]
  8. F.H. Hebeker, An a posteriori error estimator for elliptic boundary and interface problems. Preprint 97-46 (SFB 359), Universitt Heidelberg (1997); submitted. [Google Scholar]
  9. F.K. Hebeker, Multigrid convergence analysis for elliptic problems arising in composite materials (in preparation). [Google Scholar]
  10. F.K. Hebeker and Yu.A. Kuznetsov, Unsteady convection and convection-diffusion problems via direct overlapping domain decomposition methods. Preprint 93-54 (SFB 359), Universitt Heidelberg, 1993; Numer. Methods Partial Differential Equations 14 (1998) 387-406. [Google Scholar]
  11. K.H. Hoffmann and J. Zou, Finite element analysis on the Lawrence-Doniach model for layered superconductors. Numer. Funct. Anal. Optim. 18 (1997) 567-589. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Jäger, An overlapping domain decomposition method to parallelize the solution of parabolic differential equations (in German). Ph.D. thesis, Universitt Heidelberg (1994). [Google Scholar]
  13. C. Kober, Composite materials of shape-memory alloys: modelling as layers and numerical simulation (in German). Ph.D. thesis, Technische Universitt Mnchen (1997). [Google Scholar]
  14. Yu.A. Kuznetsov, New algorithms for approximate realization of implicit difference schemes. Sov. J. Numer. Anal. Modell. 3 (1988) 99-114. [CrossRef] [Google Scholar]
  15. Yu.A. Kuznetsov, Domain decomposition methods for unsteady convection diffusion problems. Comput. Methods Appl. Sci. Engin. (Proceedings of the Ninth International Conference, Paris 1990) SIAM, Philadelphia (1990) 211-227. [Google Scholar]
  16. Yu.A. Kuznetsov, Overlapping domain decomposition methods for finite element problems with singular perturbed operators. in Domain decomposition Methods for Partial differential equations, R. Glowinski et al. Eds., SIAM, Philadelphia. Proc. of the 4th Intl. Symp. (1991) 223-241 [Google Scholar]
  17. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin etc. (1994). [Google Scholar]
  18. R. Rannacher and J. Zhou, Analysis of a domain splitting method for nonstationary convection-diffusion problems. East-West J. Numer. Math. 2 (1994) 151-172. [MathSciNet] [Google Scholar]
  19. J. Wloka, Partielle Differentialgleichungen. Teubner, Stuttgart (1982). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you