Free Access
Volume 34, Number 1, January/February 2000
Page(s) 63 - 84
Published online 15 April 2002
  1. M. Bernadou, Méthodes d'Éléments Finis pour les Problèmes de Coques Minces. Masson, Paris-Milan-Barcelone (1994).
  2. M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag (1976) 89-136.
  3. M. Bernadou and B. Lalanne, On the approximations of free vibration modes of a general thin shell, application to turbine blades, in The Third European Conference on Mathematics in Industry, J. Manley et al. Eds., Kluwer Academic Publishers and B.G. Teubner Stuttgart (1990) 257-264.
  4. M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. Technical Report 1771, Unité de Recherche INRIA-Rocquencourt (1992).
  5. M. Bernadou and J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems. J. Math. Pures Appl. 60 (1981) 285-308. [MathSciNet]
  6. P.G. Ciarlet, The Finite Element Method For Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
  7. M.C. Delfour and J.P. Zolésio, Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations 128 (1995) 125-167. [CrossRef]
  8. W. Flügge, Tensor Analysis and Continuum Mechanics. Springer-Verlag (1972).
  9. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984).
  10. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. [CrossRef] [MathSciNet]
  11. R. Glowinski and M. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in Domain Decomposition Methods for Partial Differential Equations, SIAM (1988) 144-172.
  12. A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press, 2nd. edn. (1968).
  13. W.T. Koiter, On the nonlinear theory of thin elastic shells, in Proc. Kon. Ned. Akad. Wetensch., Vol. B (1966) 1-54.
  14. J.E. Lagnese, Boundary Stabilization of Thin Plates. SIAM, Philadelphia, Pennsylvania (1989).
  15. I. Lasiecka, Uniform stabilization of a full von Karman system with nonlinear boundary feedback. SIAM J. Control 36 (1998) 1376-1422. [CrossRef] [MathSciNet]
  16. I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Applicable Anal. 68 (1998) 123-145.
  17. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).
  18. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer Verlag (1972).
  19. L. Mansfield, Analysis of finite element methods for the nonlinear dynamic analysis of shells. Numerische Mathematik 42 (1983) 213-235. [CrossRef] [MathSciNet]
  20. R. Marchand, Finite element approximations of control problems arising in nonlinear shell theory. Ph.D. thesis, University of Virginia (1996).
  21. V.G. Mazya and T.V. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985).
  22. A. Raoult, Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques. Doctoral Dissertation, Université Pierre et Marie Curie, Paris (1988).
  23. H.L. Royden, Real Analysis. Macmillan Publishing Company, 3rd edn. (1988).
  24. V.I. Sedenko, The uniqueness of generalized solutions of initial boundary value problem for Marguerre-Vlasov equation in the nonlinear oscillation theory of shallow shells. Izwestia Vysshyh Uchebnych Zavedenij (1994) 1-2.
  25. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag (1984).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you