Free Access
Volume 34, Number 1, January/February 2000
Page(s) 127 - 138
Published online 15 April 2002
  1. R.A. Adams, Sobolev Space. Academic Press New York (1975).
  2. J.M. Ball, A version of the fundamental theorem for Young measure. Lect. Notes Phys. Springer Verlag 344 (1988) 207-215.
  3. A.R. Bruss, results applicable to computer vision. J. Math. Phys. 23 (1982) 890-896. [CrossRef] [MathSciNet]
  4. J. Chabrowski and K.-W. Zhang, On shape from shading problem Functional Analysis, Approximation Theory and Numerical Analysis, J.M. Rassias Ed., World Scientific (1994) 93-105.
  5. B. Dacorogna Direct Methods in the Calculus of Variations. Springer-Verlag (1989).
  6. P. Deift and J. Sylvester, Some remarks on the shape-from-shading problem in computer vision. J. Math. Anal. Appl. 84 (1981) 235-248. [CrossRef] [MathSciNet]
  7. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Stud. in Adv. Math. CRC Press, Boca Raton (1992).
  8. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod Paris (1974).
  9. L. Gritz, Blue Moon Rendering Tools: Ray tracing software available from (1995).
  10. B.K.P. Horn, Robot Vision. Engineering and Computer Science Series, MIT Press, MacGraw Hill (1986).
  11. B.K.P. Horn and M.J. Brooks, Shape from Shading. Ed. MIT Press Ser. in Artificial Intelligence (1989).
  12. B.K.P. Horn and M.J. Brooks, Variational Approach to Shape from Shading in [11]
  13. S. Levy, T. Munzner and M. Phillips, Geomview Visualisation software available from or
  14. P.-L. Lions, E. Rouy and A. Tourin, Shape-from-shading, viscosity solutions and edges. Numer. Math. 64 (1993) 323-353. [CrossRef] [MathSciNet]
  15. Pixar, The RenderMan Interface, version 3.1, official specification. Pixar (1989)
  16. M. Phillips, S. Levy and T. Munzner, Geomview: An Interactive Geometry Viewer. Notices Amer. Math. Soc. 40 (1993) 985-988.
  17. E. Rouy and A. Tourin, A viscosity solution approach to shape-from-shading. SIAM J. Numer. Anal. 29 (1992) 867-884. [CrossRef] [MathSciNet]
  18. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970).
  19. L. Tartar, Compensated compactness and partial differential equations, in Microstructure and Phase Transitions, D. Kinderlehrer et al. Eds., Springer Verlag (1992).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you