Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 459 - 475
DOI https://doi.org/10.1051/m2an:2000151
Published online 15 April 2002
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. and Comp. Fluid Dynamics 1 (1990) 303-325. [Google Scholar]
  2. V. Barbu and S. Sritharan, H-control theory of fluids dynamics. Proc. R. Soc. Lond. A 454 (1998) 3009-3033. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Bewley, P. Moin and R. Temam, Optimal and robust approaches for linear and nonlinear regulartion problems in fluid mechanics, AIAA 97-1872, 28th AIAA Fluid Dynamics Conference and 4th AIAA Shear Flow Control Conference (1997). [Google Scholar]
  4. P. Cannarsa and G. da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 90 (1990) 27-47. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Cannarsa and G. da Prato, Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces, in: Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Pitman Research Notes in Mathematics Series n.268 (1992) pp. 72-85. [Google Scholar]
  6. S. Cerrai, Optimal control problem for stochastic reaction-diffusion systems with non Lipschitz coefficients (to appear). [Google Scholar]
  7. H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. da Prato and A. Debussche, Differentiability of the transition semigroup of stochastic Burgers equation. Rend. Acc. Naz. Lincei, s.9, v. 9 (1998) 267-277. [Google Scholar]
  9. G. da Prato and A. Debussche, Dynamic Programming for the stochastic Burgers equations. Annali di Mat. Pura ed Appl. (to appear). [Google Scholar]
  10. G. da prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Acc. Lincei. s.9, v. 8 (1997) 183-188. [Google Scholar]
  11. H. Fattorini and S. Sritharan, Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. A 439 (1992) 81-102. [Google Scholar]
  12. F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations 20 (1995) 775-826. [CrossRef] [Google Scholar]
  13. F. Gozzi, Global Regular Solutions of Second Order Hamilton-Jacobi Equations in Hilbert spaces with locally Lipschitz nonlinearities. J. Math. Anal. Appl. 198 (1996) 399-443. [CrossRef] [MathSciNet] [Google Scholar]
  14. P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math. 161 (1988) 243-278. [CrossRef] [MathSciNet] [Google Scholar]
  15. Part II: Optimal control of Zakai's equation, in Stochastic partial differential equations and applications, G. da Prato and L. Tubaro Eds, Lecture Notes in Mathematics No. 1390, Springer-Verlag (1990) 147-170. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal. 86 (1991) 1-18. [Google Scholar]
  16. S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Cont. Lett. 16 (1991) 299-307. [Google Scholar]
  17. S. Sritharan, An introduction to deterministic and stochastic control of viscous flow, in Optimal control of viscous flows, p. 1-42, SIAM, Philadelphia, S. Sritharan Ed. [Google Scholar]
  18. A. Swiech, Viscosity solutions of fully nonlinear partial differential equations with "unbounded'' terms in infinite dimensions, Ph.D. thesis, University of California at Santa Barbara (1993). [Google Scholar]
  19. R. Temam, T. Bewley and P.Moin, Control of turbulent flows, Proc. of the 18th IFIP TC7, Conf. on system modelling ond optimization, Detroit, Michigan (1997). [Google Scholar]
  20. R. Temam, The Navier-Stokes equation, North-Holland (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you