Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 439 - 458
DOI https://doi.org/10.1051/m2an:2000150
Published online 15 April 2002
  1. M. Bercovier, O. Pironneau and V. Sastri, Finite elements and characteristics for some parabolic-hyperbolic problems. Appl. Math. Modelling 7 (1983) 89-96. [CrossRef] [MathSciNet] [Google Scholar]
  2. K. Boukir, Y. Maday, B. Metivet and R. Razafindrakoto, A high-order characteristics/finite element method for imcompressible Navier-Stokes equations, Rapport de l'Université Pierre et Marie Curie, R 92032 (1992). [Google Scholar]
  3. J.B. Burie and M. Marion, Multi-level methods in space and time for Navier-Stokes equations. SIAM J. Numer. Anal. 34 (1997) 1574-1599. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.B. Burie and M. Marion, Adaptative multi-level methods in space and time for paraboloc problems- The periodic case. Math. of Comp. (to appear). [Google Scholar]
  5. A. Debussche, T. Dubois and R. Temam, The nonlinear Galerkin method: A multi-scale method applied to the simulation of turbulent flows. Theoret. Comput. Fluid Dynamics 7 (1995) 279-315. [CrossRef] [Google Scholar]
  6. J. Douglas and T.F. Russel, Numerical methods for convection dominated diffusion problems based on combining the method of caracteristics with finite element methods or finite difference method. SIAM J. Numer. Anal. 19 (1982) 871-885. [Google Scholar]
  7. T. Dubois, Simulation numérique d'écoulement homogènes et non-homogènes par des méthodes multi-résolution, Thèse, Université Paris-Sud (1993). [Google Scholar]
  8. K. Eriksson and C. Johnson, Adaptative finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. M2AN 22 (1998) 93-114. [Google Scholar]
  10. P. Houston and E. Suli, Adaptative Lagrange-Galerkin methods for unsteady convection-dominated diffusion problems, Oxford University Computing Laboratory Report, 95/24 (1995). [Google Scholar]
  11. F. Jauberteau, Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales. Méthode de Galerkin non linéaire, Thèse, Université Paris-Sud (1990). [Google Scholar]
  12. M. Marion and A. Mollard, A multi-level characteristics method for periodic convection-dominated diffusion problems. Numer. Meth. PDEs. (to appear). [Google Scholar]
  13. M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995) 1170-1184. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Mollard, Méthodes de caractéristiques multi-niveaux en espace et en temps pour une équation de convection-diffusion - Cas d'une approximation pseudo-spectrale, Thèse, École Centrale de Lyon (1998). [Google Scholar]
  15. O. Pironneau, Finite element methods for fluids, Masson (1989). [Google Scholar]
  16. E. Suli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes Equations. Numer. Math. 53 (1988) 459-483. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Suli and A.F. Ware, A spectral method of characteristics for hyperbolic problems. SIAM. J. Numer. Anal. 28 (1991) 423-445. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you