Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 201 - 222
DOI https://doi.org/10.1051/m2an:2000138
Published online 15 April 2002
  1. V.I. Arnold, Small denominators. I. Mappings of the circumference onto itself. Amer. Math. Soc. Transl. Ser. 2. 46 (1965) 213-284. [Google Scholar]
  2. V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics. Appl. Math. Sci. 125 (1997). [Google Scholar]
  3. J. Avrin, A. Babin, A. Mahalov and B. Nicolaenko, On regularity of solutions of 3D Navier-Stokes equations. Appl. Anal. 71 (1999) 197-214. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Babin, A. Mahalov and B. Nicolaenko, Long-time averaged Euler and Navier-Stokes equations for rotating fluids, In Structure and Dynamics of Nonlinear Waves in Fluids, 1994 IUTAM Conference, K. Kirchgässner and A. Mielke Eds, World Scientific (1995) 145-157. [Google Scholar]
  5. A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Europ. J. Mech. B/Fluids 15, No. 3, (1996) 291-300. [Google Scholar]
  6. A. Babin, A. Mahalov and B. Nicolaenko, Resonances and regularity for Boussinesq equations. Russian J. Math. Phys. 4, No. 4, (1996) 417-428. [Google Scholar]
  7. A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability of rotating shallow-water equations. Proc. Acad. Sci. Paris Ser. 1 324 (1997) 593-598. [Google Scholar]
  8. A. Babin, A. Mahalov and B. Nicolaenko, Global regularity and integrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Asympt. Anal. 15 (1997) 103-150. [Google Scholar]
  9. A. Babin, A. Mahalov and B. Nicolaenko, Global splitting and regularity of rotating shallow-water equations. Eur. J. Mech., B/Fluids 16, No. 1, (1997) 725-754. [Google Scholar]
  10. A. Babin, A. Mahalov and B. Nicolaenko, On the nonlinear baroclinic waves and adjustment of pancake dynamics. Theor. and Comp. Fluid Dynamics 11 (1998) 215-235. [CrossRef] [Google Scholar]
  11. A. Babin, A. Mahalov, B. Nicolaenko and Y. Zhou, On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. and Comp. Fluid Dyn. 9 (1997) 223-251. [CrossRef] [Google Scholar]
  12. A. Babin, A. Mahalov and B. Nicolaenko, On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math. Models Methods Appl. Sci., 9, No. 7 (1999) 1089-1121. [Google Scholar]
  13. A. Babin, A. Mahalov and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Lett. Appl. Math. (to appear). [Google Scholar]
  14. A. Babin, A. Mahalov and B. Nicolaenko, Global Regularity of 3D Rotating Navier-Stokes Equations for Resonant Domains. Indiana University Mathematics Journal 48, No. 3, (1999) 1133-1176. [Google Scholar]
  15. A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits of stably stratified three-dimensional Euler-Boussinesq equations and ageostrophic wave fronts, to appear in Mathematics of Atmosphere and Ocean Dynamics, Cambridge University Press (1999). [Google Scholar]
  16. A.V. Babin and M.I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam (1992). [Google Scholar]
  17. C. Bardos and S. Benachour, Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de Formula . Annali della Scuola Normale Superiore di Pisa 4 (1977) 647-687. [Google Scholar]
  18. P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atm. Sci. 52, No. 24, (1995) 4410-4428. [Google Scholar]
  19. A.J. Bourgeois and J.T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and the ocean, SIAM J. Math. Anal. 25, No. 4, (1994) 1023-1068. [Google Scholar]
  20. L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771-831. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-Y. Chemin, A propos d'un probleme de pénalisation de type antisymétrique. Proc. Paris Acad. Sci. 321 (1995) 861-864. [Google Scholar]
  22. P. Constantin, The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. and Comp. Fluid Dyn. 9, No. 3/4, (1997) 183-191. [Google Scholar]
  23. P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press (1988). [Google Scholar]
  24. A. Craya, Contribution à l'analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l'Air 345 (1958). [Google Scholar]
  25. P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press (1981). [Google Scholar]
  26. P.F. Embid and A.J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Diff. Eqs. 21 (1996) 619-658. [CrossRef] [Google Scholar]
  27. I. Gallagher, Un résultat de stabilité pour les équations des fluides tournants, C.R. Acad. Sci. Paris, Série I (1997) 183-186. [Google Scholar]
  28. I. Gallagher, Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363-384. [CrossRef] [MathSciNet] [Google Scholar]
  29. I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. E. Grenier, Rotating fluids and inertial waves. Proc. Acad Sci. Paris Ser. 1 321 (1995) 711-714. [Google Scholar]
  31. J.L. Joly, G. Métivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J. 70 (1993) 373-404. [CrossRef] [MathSciNet] [Google Scholar]
  32. J.L. Joly, G. Métivier and J. Rauch, Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal. 114 (1993) 106-231. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.L. Joly, G. Métivier and J. Rauch, Coherent nonlinear waves and the Wiener algebra. Ann. Inst. Fourier 44 (1994) 167-196. [Google Scholar]
  34. J.L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Scient. E. N. S. Paris 4 (1995) 28, 51-113. [Google Scholar]
  35. D.A. Jones, A. Mahalov and B. Nicolaenko, A numerical study of an operator splitting method for rotating flows with large ageostrophic initial data. Theor. and Comp. Fluid Dyn. 13, No. 2, (1998) 143-159. [Google Scholar]
  36. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edition, Gordon and Breach, New York (1969). [Google Scholar]
  37. J.-L. Lions, R. Temam and S. Wang, Geostrophic asymptotics of the primitive equations of the atmosphere. Topological Methods in Nonlinear Analysis 4 (1994) 253-287, special issue dedicated to J. Leray. [Google Scholar]
  38. J.-L. Lions, R. Temam and S. Wang, A simple global model for the general circulation of the atmosphere. Comm. Pure Appl. Math. 50 (1997) 707-752. [CrossRef] [MathSciNet] [Google Scholar]
  39. A. Mahalov, S. Leibovich and E.S. Titi, Invariant helical subspaces for the Navier-Stokes Equations. Arch. for Rational Mech. and Anal. 112, No. 3, (1990) 193-222. [Google Scholar]
  40. A. Mahalov and P.S. Marcus, Long-time averaged rotating shallow-water equations, Proc. of the First Asian Computational Fluid Dynamics Conference, W.H. Hui, Y.-K. Kwok and J.R. Chasnov Eds, vol. 3, Hong Kong University of Science and Technology (1995) 1227-1230. [Google Scholar]
  41. O. Métais and J.R. Herring, Numerical experiments of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202 (1989) 117. [CrossRef] [Google Scholar]
  42. J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition, Springer-Verlag (1987). [Google Scholar]
  43. H. Poincaré, Sur la précession des corps déformables. Bull. Astronomique 27 (1910) 321. [Google Scholar]
  44. G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6, No. 3, (1993) 503-568. [Google Scholar]
  45. S. Schochet, Fast singular limits of hyperbolic PDE's. J. Differential Equations 114 (1994) 476-512. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  46. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1970). [Google Scholar]
  47. S.L. Sobolev, Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia. 18, No. 1, (1954) 3-50. [Google Scholar]
  48. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam (1984). [Google Scholar]
  49. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia (1983). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you