Free Access
Issue
ESAIM: M2AN
Volume 34, Number 2, March/April 2000
Special issue for R. Teman's 60th birthday
Page(s) 315 - 335
DOI https://doi.org/10.1051/m2an:2000143
Published online 15 April 2002
  1. A. Babin, A. Mahalov and B. Nicolaenko, Global Splitting, Integrability and Regularity of 3D Euler and Navier-Stokes Equations for Uniformly Rotating Fluids. Eur. J. Mech. 15 (1996) 291-300. [Google Scholar]
  2. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'École Normale Supérieure 14 (1981) 209-246. [Google Scholar]
  3. J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque 230 (1995). [Google Scholar]
  4. J.-Y. Chemin, À propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures Appl. 76 (1997) 739-755. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differential Equations 121 (1992) 314-328. [CrossRef] [Google Scholar]
  6. J. -Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, preprint of Université d'Orsay (1999). [Google Scholar]
  7. B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation. SIAM J. Appl. Math. (to appear). [Google Scholar]
  8. B. Desjardins and E. Grenier, Derivation of quasi-geostrophic potential vorticity equations. Adv. in Differential Equations 3 (1998), No. 5, 715-752. [Google Scholar]
  9. B. Desjardins and E. Grenier, Low Mach number limit of compressible flows in the whole space. Proceedings of the Royal Society of London A 455 (1999) 2271-2279. [Google Scholar]
  10. H. Fujita and T. Kato, On the Navier-Stokes initial value problem I. Archiv for Rational Mechanic Analysis 16 (1964) 269-315. [Google Scholar]
  11. I. Gallagher, The Tridimensional Navier-Stokes Equations with Almost Bidimensional Data: Stability, Uniqueness and Life Span. International Mathematics Research Notices 18 (1997) 919-935. [CrossRef] [Google Scholar]
  12. H.P. Greenspan, The theory of rotating fluids. Cambridge monographs on mechanics and applied mathematics (1969). [Google Scholar]
  13. E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, No. 5-6, (1997) 953-975. [Google Scholar]
  14. D. Iftimie, La résolution des équations de Navier-Stokes dans des domaines minces et la limite quasigéostrophique. Thèse de l'Université Paris 6 (1997). [Google Scholar]
  15. D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. [Google Scholar]
  16. J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1933) 193-248. [Google Scholar]
  17. J. Pedlosky, Geophysical fluid dynamics, Springer (1979). [Google Scholar]
  18. J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension. Duke Mathematical Journal 49 (1982) 397-475. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires. Annales de l'Institut Fourier 36 (1986) 39-82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you