Free Access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 799 - 810
DOI https://doi.org/10.1051/m2an:2000104
Published online 15 April 2002
  1. R. Acar and C.R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Math. Sci. Engrg. 190 (1993). [Google Scholar]
  3. A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  5. D. Dobson and O. Scherzer, Analysis of regularized total variation penalty methods for denoising. Inverse Problems 12 (1996) 601-617. [CrossRef] [MathSciNet] [Google Scholar]
  6. D.C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56 (1996) 1181-1192. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Ekeland and T. Turnbull, Infinite-Dimensional Optimization and Convexity. Chicago Lectures in Math., The University of Chicago Press, Chicago and London (1983). [Google Scholar]
  8. L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). [Google Scholar]
  9. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (1977). [Google Scholar]
  10. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. 80 (1984). [Google Scholar]
  11. K. Ito and K. Kunisch, An active set strategy based on the augmented lagrantian formulation for image restauration. RAIRO Modél. Math. Anal. Numér. 33 (1999) 1-21. [Google Scholar]
  12. K. Ito and K. Kunisch, BV-type regularization methods for convoluted objects with edge-flat-grey scales. Inverse Problems 16 (2000) 909-928. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.Z. Nashed and O. Scherzer, Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optim. 19 (1998) 873-901. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Nikolova, Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. (to appear). [Google Scholar]
  15. L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm. Physica D 60 (1992) 259-268. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. W. Rudin, Real and Complex Analysis, 3rd edn. McGraw-Hill, New York-St Louis-San Francisco (1987). [Google Scholar]
  17. C. Vogel and M. Oman, Iterative methods for total variation denoising. SIAM J. Sci. Comp. 17 (1996) 227-238. [CrossRef] [Google Scholar]
  18. W.P. Ziemer, Weakly Differentiable Functions. Grad. Texts in Math. 120 (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you