Free Access
Volume 34, Number 4, July/August 2000
Page(s) 723 - 748
Published online 15 April 2002
  1. H. Ammari, S. Moskow and M. Vogelius, Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. Preprint, Rutgers University (1999); Inverse Problems (submitted). [Google Scholar]
  2. P.M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, New Jersey (1971). [Google Scholar]
  3. L. Baratchart, J. Leblond, F. Mandréa and E.B. Saff, How can meromorhic approximation help to solve some 2D inverse problems for the Laplacian? Inverse Problems 15 (1999) 79-90. [Google Scholar]
  4. J. Blitz, Electrical and Magnetic Methods of Nondestructive Testing. IOP Publishing, Adam Hilger, New York (1991). [Google Scholar]
  5. D. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. [Google Scholar]
  6. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Krieger Publishing Co., Malabar, Florida (1992). [Google Scholar]
  7. D. Dobson and F. Santosa, Nondestructive evaluation of plates using eddy current methods. Internat. J. Engrg. Sci. 36 (1998) 395-409. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York (1983). [Google Scholar]
  9. D. Griffiths, Introduction to Electrodynamics, 2nd Ed., Prentice Hall, Upper Saddle River, New Jersey (1989). [Google Scholar]
  10. F. Gylys-Colwell, An inverse problem for the Helmholtz equation. Inverse Problems 12 (1996) 139-156. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.D. Jackson, Classical Electrodynamics, 2nd Ed., Wiley, New York (1975). [Google Scholar]
  12. R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 289-298. II. Interior results. Comm. Pure Appl. Math. 38 (1985) 643-667. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Lassas, The impedance imaging problem as a low-frequency limit. Inverse Problems 13 (1997) 1503-1518. [CrossRef] [MathSciNet] [Google Scholar]
  14. N.N. Lebedev, Special Functions & Their Applications. Dover Publications, New York (1972). [Google Scholar]
  15. A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143 (1996) 71-96. [Google Scholar]
  16. P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Sahin and E.L. Miller, Electromagnetic scattering-based array processing methods for near-field object characterization. Preprint, Northeastern University (1998). [Google Scholar]
  18. E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations. J. Comput. Appl. Math. 42 (1992) 123-136. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math. 39 (1986) 91-112. [Google Scholar]
  20. J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125 (1987) 153-169. [Google Scholar]
  21. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, London (1962). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you