Free Access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 749 - 774
DOI https://doi.org/10.1051/m2an:2000102
Published online 15 April 2002
  1. G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem. RAIRO Modél. Math. Anal. Numér. 28 (1994) 575-610. [Google Scholar]
  2. V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994) 2981-2983. [CrossRef] [PubMed] [Google Scholar]
  3. V. Bonač ic-Koutecký and J. Koutecký, General properties of the Hartree-Fock problem demonstrated on the frontier orbital model. II. Analysis of the customary iterative procedure. Theoret. Chim. Acta 36 (1975) 163-180. [CrossRef] [Google Scholar]
  4. J.C. Facelli and R.H. Contreras, A general relation between the intrinsic convergence properties of SCF Hartree-Fock calculations and the stability conditions of their solutions. J. Chem. Phys. 79 (1983) 3421-3423. [CrossRef] [Google Scholar]
  5. R. Fletcher, Optimization of SCF LCAO wave functions. Mol. Phys. 19 (1970) 55-63. [CrossRef] [Google Scholar]
  6. D.R. Hartree, The calculation of atomic structures. Wiley (1957). [Google Scholar]
  7. W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986). [Google Scholar]
  8. A. Igawa and H. Fukutome, A new direct minimization algorithm for Hartree-Fock calculations. Progr. Theoret. Phys. 54 (1975) 1266-1281. [CrossRef] [Google Scholar]
  9. J. Koutecký and V. Bonačic, On convergence difficulties in the iterative Hartree-Fock procedure. J. Chem. Phys. 55 (1971) 2408-2413. [CrossRef] [Google Scholar]
  10. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. [Google Scholar]
  11. E.H. Lieb, Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018-3028. [CrossRef] [Google Scholar]
  12. E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys. 53 (1977) 185-194. [CrossRef] [MathSciNet] [Google Scholar]
  13. P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109 (1987) 33-97. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. McWeeny, The density matrix in self-consistent field theory. I. Iterative construction of the density matrix. Proc. Roy. Soc. London Ser. A 235 (1956) 496-509. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. McWeeny, Methods of molecular Quantum Mechanics. Academic Press (1992). [Google Scholar]
  16. J. Paldus, Hartree-Fock stability and symmetry breaking, in Self Consistent Field Theory and Application. Elsevier (1990) 1-45. [Google Scholar]
  17. P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556-560. [CrossRef] [Google Scholar]
  18. M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis. Academic Press (1980). [Google Scholar]
  19. M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (1978). [Google Scholar]
  20. C.C.J. Roothaan, New developments in molecular orbital theory. Rev. Modern Phys. 23 (1951) 69-89. [CrossRef] [Google Scholar]
  21. V.R. Saunders and I.H. Hillier, A ``level-shifting'' method for converging closed shell Hartree-Fock wave functions. Int. J. Quantum Chem. 7 (1973) 699-705. [CrossRef] [Google Scholar]
  22. H.B. Schlegel and J.J.W. McDouall, Do you have SCF stability and convergence problems?, in Computational Advances in Organic Chemistry, Kluwer Academic (1991) 167-185. [Google Scholar]
  23. R. Seeger R. and J.A. Pople, Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations. J. Chem. Phys. 65 (1976) 265-271. [CrossRef] [Google Scholar]
  24. R.E. Stanton, The existence and cure of intrinsic divergence in closed shell SCF calculations. J. Chem. Phys. 75 (1981) 3426-3432. [CrossRef] [Google Scholar]
  25. R.E. Stanton, Intrinsic convergence in closed-shell SCF calculations. A general criterion. J. Chem. Phys. 75 (1981) 5416-5422. [CrossRef] [Google Scholar]
  26. M.C. Zerner and M. Hehenberger, A dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you