Free Access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 935 - 951
DOI https://doi.org/10.1051/m2an:2000110
Published online 15 April 2002
  1. P.P. Aristov and E.V. Chizhonkov, On the Constant in the LBB condition for rectangular domains. Report No. 9535, Dept. of Math. Univ. of Nijmegen, The Netherlands (1995). [Google Scholar]
  2. I. Babuska, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef] [Google Scholar]
  3. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa 25 (1997) 131-154. [Google Scholar]
  4. D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 141-158. [MathSciNet] [Google Scholar]
  5. D. Braess, Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer-Verlag, Berlin, Heidelberg, New York (1997). [Google Scholar]
  6. J.H. Bramble and J.E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximation of elliptic problems. Math. Comp. 50 (1988) 1-17. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Brezzi, (1974) On the existence, uniqueness and approximation of the saddle-point problems arising from Lagrange multipliers. Numer. Math. 20 (1974) 179-192. [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer Series in Comp. Math. 15, Springer-Verlag, New York (1991). [Google Scholar]
  9. E.V. Chizhonkov, Application of the Cossera spectrum to the optimization of a method for solving the Stokes Problem. Russ. J. Numer. Anal. Math. Model. 9 (1994) 191-199. [CrossRef] [Google Scholar]
  10. M. Crouzeix, Étude d'une méthode de linéarisation. Résolution des équations de Stokes stationaires. Application aux équations des Navier - Stokes stationaires, Cahiers de l'IRIA (1974) 139-244. [Google Scholar]
  11. C.M. Dafermos, Some remarks on Korn's inequality. Z. Angew. Math. Phys. 19 (1968) 913-920. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  13. P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston (1985). [Google Scholar]
  14. M. Gunsburger, Finite element methods for viscous incompressible flows. A guide to the theory, practice and algorithms. Academic Press, London (1989). [Google Scholar]
  15. C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch. Ration. Mech. Anal. 40 (1971) 384-402. [Google Scholar]
  16. G.M. Kobelkov, On equivalent norms in L2. Anal. Math. No. 3 (1977) 177-186. [Google Scholar]
  17. U. Langer and W. Queck, On the convergence factor of Uzawa's algorithm. J. Comp. Appl. Math. 15 (1986) 191-202. [CrossRef] [Google Scholar]
  18. S.G. Mikhlin, The spectrum of an operator pencil of the elasticity theory. Uspekhi Mat. Nauk 28 (1973) 43-82; English translation in Russian Math. Surveys, 28. [Google Scholar]
  19. M.A. Olshanskii, Stokes problem with model boundary conditions. Sbornik: Mathematics 188 (1997) 603-620. [CrossRef] [MathSciNet] [Google Scholar]
  20. M.A. Olshanskii and E.V. Chizhonkov, On the optimal constant in the inf-sup condition for rectangle. Matematicheskie Zametki 67 (2000) 387-396. [Google Scholar]
  21. B.N. Parlett, The Symmetrical Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, New Jersey (1980). [Google Scholar]
  22. R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equation 8 (1992) 97-111. [CrossRef] [MathSciNet] [Google Scholar]
  23. D. Silvester and A. Wathen, Fast iterative solution of stabilized Stokes systems part II: Using block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352-1367. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Schäfer and S. Turek, Benchmark computations of laminar flow around cylinder, in Flow Simulation with High-Performance Computers II, E.H. Hirschel Ed., Notes on Numerical Fluid Mechanics, 52, Vieweg (1996) 547-566. [Google Scholar]
  25. G. Strang and G.I. Fix, An analysis of the finite element methods. Prentice-Hall, New-York (1973). [Google Scholar]
  26. S. Turek, Efficient solvers for incompressible flow problems: An algorithmic approach in view of computational aspects. LNCSE 6, Springer, Heidelberg (1999). [Google Scholar]
  27. S. Turek and Chr. Becker, FEATFLOW: Finite element software for the incompressible Navier-Stokes equations: User Manual, Release 1.1. Univ. of Heidelberg (1998) (http://www.featflow.de). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you