Free Access
Issue
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
Page(s) 1051 - 1067
DOI https://doi.org/10.1051/m2an:2000115
Published online 15 April 2002
  1. R.A. Adams, Sobolev Space. Academic Press, New York (1975). [Google Scholar]
  2. C. Amrouche and V. Girault, Propriétés fonctionnelles d'opérateurs. Application au problème de stokes en dimension qualconque. Publications du Laboratoire d'Analyse Numérique, No. 90025, Université Piere et Marie Curie, Paris, France (1990). [Google Scholar]
  3. D.N. Arnold and F. Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary Value Problems for Partial Differential Equations, edited by C. Baiocchi and J.L. Lions. Masson, Paris (1992) 287-292. [Google Scholar]
  4. J. Baranger, K. Najib and D. Sandri, Numerical analysis of a three-field model for a Quasi-Newtonian flow. Comput. Methods. Appl. Mech. Engrg. 109(1993) 281-292. [Google Scholar]
  5. J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a Non-Newtonian flow. Numer. Math. 61 (1994) 437-456. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991) 581-590. [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Methods. Springer-Verlags, New York (1991). [Google Scholar]
  8. P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). [Google Scholar]
  9. M.J. Crochet, A.R. Davis and K. Walters, Numerical Simulations of Non-Newtonian Flow. Elsevier, Amsterdam, Rheology Series 1 (1984). [Google Scholar]
  10. M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations. RAIRO Anal. Numér. 3 (1973) 33-75. [Google Scholar]
  11. M. Fortin, Old and new finite elements for incompressible flows. Internat. J. Numer. Methods Fluids 1 (1981) 347-364. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Fortin, R. Guénette and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Girault and R.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin-New York (1986). [Google Scholar]
  15. P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equation using the finite element technique. Comput and Fluids 1 (1973) 73-100. [CrossRef] [MathSciNet] [Google Scholar]
  16. A.F.D. Loula and J.W.C. Guerreiro, Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Engrg. 79 (1990) 89-109. [Google Scholar]
  17. J. Malek and S.J. Necas, Weak and Measure-valued Solution to Evolutionary Partial Differential Equations. Chapman & Hall (1996). [Google Scholar]
  18. Pingbing Ming and Zhong-ci Shi, Dual combined finite element methods for Non-Newtonian flow (I) Nonlinear Stabilized Methods (1998 Preprint) [Google Scholar]
  19. Pingbing Ming and Zhong-ci Shi, A technique for the analysis of B-B inequality for non-Newtonian flow (1998 Preprint). [Google Scholar]
  20. D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Math. Anal. Numér. 27 (1993) 817-841. [Google Scholar]
  21. D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscoélastiques suit la Loi Puissance ou le modèle de Carreau. RAIRO-Modèl. Math. Anal. Numér. 27 (1993) 131-155. [MathSciNet] [Google Scholar]
  22. D. Sandri, A posteriori estimators for mixed finite element approximation of a fluid obeying the power law. Comput. Meths. Appl. Mech. Engrg. 166 (1998) 329-340. [CrossRef] [Google Scholar]
  23. C. Schwab and M. Suri, Mixed h-p finite element methods for Stokes and non-Newtonian Flow. Research report No. 97-19, Seminar für Angewandte Mathematik, ETH Zürich (1997). [Google Scholar]
  24. B. Szabó and I. Babuska, Finite Element Analysis. John & Sons, Inc. (1991). [Google Scholar]
  25. Tianxiao Zhou, Stabilized finite element methods for a model parameter-dependent problem, in Proc. of the Second Conference on Numerical Methods for P.D.E, edited by Longan Ying and Benyu Guo. World Scientific, Singapore (1991) 192-194. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you