Free Access
Issue
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
Page(s) 1165 - 1188
DOI https://doi.org/10.1051/m2an:2000122
Published online 15 April 2002
  1. L. Angermann, Error Estimate for the Finite-Element Solution of an Elliptic Singularly Perturbed Problem. IMA J. Numer. Anal. 15 (1995) 161-196. [CrossRef] [MathSciNet] [Google Scholar]
  2. R.E. Bank, J.F. Bürgler, W. Fichtner and R.K. Smith, Some Upwinding Techniques for Finite Element Approximations of Convection-Diffusion Equations. Numer. Math. 58 (1990) 185-202. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.E. Bank, W.M. Jr. Coughran and L.C. Cowsar, The Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Comput. Visual Sci. 1 (1998) 123-136. [CrossRef] [Google Scholar]
  4. J. Baranger, J.-F. Maitre and F. Oudin, Connection between Finite Volume and Mixed Finite Element Methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  5. D. Braess, Finite Elemente. Springer, Berlin (1992). [Google Scholar]
  6. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, Part 1, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1991) 17-351. [Google Scholar]
  7. R. Eymard, T. Gallouet and R. Herbin, Convergence of Finite Volume Schemes for Semilinear Convection Diffusion Equations. Numer. Math. 1 (1999) 1-26. [Google Scholar]
  8. E. Gatti, S. Micheletti and R. Sacco, A New Galerkin Framework for the Drift-Diffusion Equation in Semiconductors. East-West J. Numer. Math. 6 (1998) 101-135. [MathSciNet] [Google Scholar]
  9. B. Heinrich, Finite Difference Methods on Irregular Networks. A Generalized Approach to Second Order Problems. Akademie, Berlin (1987). [Google Scholar]
  10. R. Herbin, An Error Estimate for a Finite Volume Scheme for a Diffusion-Convection Problem on a Triangular Mesh. Numer. Methods Partial Differential Equations 11 (1995) 165-173. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.D. Lazarov and I.D. Mishev, Finite Volume Methods for Reaction-Diffusion Problems, in Finite Volumes for Complex Applications, F. Benkhaldoun and R. Vilsmeier Eds., Hermes, Paris (1996) 231-240. [Google Scholar]
  12. J.J.H. Miller and S. Wang, A New Non-Conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem. IMA J. Numer. Anal. 14 (1994) 257-276. [CrossRef] [MathSciNet] [Google Scholar]
  13. I.D. Mishev, Finite Volume and Finite Volume Element Methods for Nonsymmetric Problems. Ph.D. thesis, Texas A&M University (1996). [Google Scholar]
  14. K.W. Morton, Numerical Solution of Convection-Diffusion Problems. Chapman and Hall, London (1996). [Google Scholar]
  15. K.W. Morton, M. Stynes and E. Süli, Analysis of a Cell-Vertex Finite Volume Method for Convection-Diffusion Problems. Math. Comp. 66 (1997) 1369-1406. [Google Scholar]
  16. H.G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Springer, London (1996). [Google Scholar]
  17. R. Sacco and M. Stynes, Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles. Comput. Math. Appl. 35 (1998) 35-45. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  18. R. Sacco, E. Gatti and L. Gotusso, A Nonconforming Exponentially Fitted Finite Element Method for Two-Dimensional Drift-Diffusion Models in Semiconductors. Numer. Methods Partial Differential Equations 15 (1999) 133-150. [CrossRef] [MathSciNet] [Google Scholar]
  19. H.-P. Scheffler and R. Vanselow, Convergence Analysis of a Cell-Centered FVM, in Finite Volumes for Complex Applications II, R. Vilsmeier, F. Benkhaldoun and D. Hänel Eds., Hermes, Paris (1999) 181-188. [Google Scholar]
  20. L.L. Schumaker, Spline Functions: Basic Theory. Wiley, New York (1981). [Google Scholar]
  21. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984). [Google Scholar]
  22. G. Strang, Variational Crimes in the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press (1972) 689-710. [Google Scholar]
  23. R. Vanselow and H.-P. Scheffler, Convergence Analysis of a Finite Volume Method via a New Nonconforming Finite Element Method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Vanselow, Convergence Analysis for an Exponentially Fitted FVM. Preprint MATH-NM-09-99, TU Dresden (1999). [Google Scholar]
  25. J. Xu and L. Zikatanov, A Monotone Finite Element Scheme for Convection-Diffusion Equations. Math. Comp. 68 (1999) 1429-1446. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you