Free Access
Issue |
ESAIM: M2AN
Volume 35, Number 1, January/February 2001
|
|
---|---|---|
Page(s) | 17 - 33 | |
DOI | https://doi.org/10.1051/m2an:2001105 | |
Published online | 15 April 2002 |
- D. Aregba-Driollet and R. Natalini, Convergence of relaxation schemes for conservation laws. Appl. Anal. 61 (1996) 163-193. [CrossRef] [MathSciNet] [Google Scholar]
- D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973-2004. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuska, The adaptive finite element method. TICAM Forum Notes no 7, University of Texas at Austin (1997). [Google Scholar]
- I. Babuska and W. Gui, Basic principles of feedback and adaptive approaches in the finite element method. Comput. Methods Appl. Mech. Engrg. 55 (1986) 27-42. [CrossRef] [MathSciNet] [Google Scholar]
- M. Berger and R. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35 (1998) 2298-2316. [Google Scholar]
- F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113-170. [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
- R.E. Caflisch and G.C. Papanicolaou, The fluid dynamical limit of a nonlinear model Boltzmann equation. Comm. Pure Appl. Math. 32 (1979) 589-616. [CrossRef] [MathSciNet] [Google Scholar]
- G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994) 789-830. [Google Scholar]
- B. Cockburn, F. Coquel and P. LeFloch, An error estimate for finite volume methods for conservation laws. Math. Comp. 64 (1994) 77-103. [CrossRef] [Google Scholar]
- B. Cockburn and H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws. Math. Appl. Comp. 14 (1995) 37-47. [Google Scholar]
- B. Cockburn and P.-A. Gremaud, Error estimates for finite element methods for scalar conservation laws. SIAM J. Numer. Anal. 33 (1996) 522-554. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54 (1990) 545-581. [MathSciNet] [Google Scholar]
- B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. A. Quarteroni (Ed.), Lect. Notes Math. 1697, Springer-Verlag (1998). [Google Scholar]
- B. Cockburn, S.Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84 (1989) 90-113. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411-435. [MathSciNet] [Google Scholar]
- F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal. 35 (1998) 2223-2249. [CrossRef] [MathSciNet] [Google Scholar]
- K. Dekker and J.D. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, North-Holland, Amsterdam (1984). [Google Scholar]
- L. Gosse and Ch. Makridakis, A-posteriori error estimates for numerical approximations to scalar conservation laws: schemes satisfying strong and weak entropy inequalities. IACM-FORTH Technical Report 98-4 (1998). [Google Scholar]
- L. Gosse and Ch. Makridakis, Two a posteriori error estimates for one dimensional scalar conservation laws. SIAM J. Numer. Anal. 38 (2000) 964-988. [CrossRef] [MathSciNet] [Google Scholar]
- L. Gosse and A. Tzavaras, Convergence of relaxation schemes to the equations of elastodynamics. Math. Comp. (to appear). [Google Scholar]
- D. Jacobs, B. McKinney, M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation. J. Differential Equations 116 (1995) 448-467. [Google Scholar]
- J. Jaffré, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5 (1995) 367-386. [Google Scholar]
- S. Jin and Z. Xin, The relaxing schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995) 235-277. [Google Scholar]
- C. Johnson and A. Szepessy, On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comp. 49 (1987) 427-444. [Google Scholar]
- C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws. Part I: The general approach. Comm. Pure Appl. Math. 48 (1995) 199-234. [CrossRef] [MathSciNet] [Google Scholar]
- T. Katsaounis and Ch. Makridakis, Finite volume relaxation schemes for multidimensional conservation laws. Math. Comp. (to appear). [Google Scholar]
- M.A. Katsoulakis, G.T. Kossioris and Ch. Makridakis, Convergence and error estimates of relaxation schemes for multidimensional conservation laws. Comm. Partial Differential Equations 24 (1999) 395-424. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Katsoulakis and A.E. Tzavaras, Contractive relaxation systems and the scalar multidimensional conservation law. Comm. Partial Differential Equations 22 (1997) 195-233. [MathSciNet] [Google Scholar]
- D. Kröner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions. Math. Comp. 69 (2000) 25-39. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kurganov and E. Tadmor, New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. [Google Scholar]
- N.N. Kuznetzov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. 16 (1976) 105-119. [Google Scholar]
- R.J. LeVeque and H.C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff terms. J. Comput. Phys. 86 (1990) 187-210. [CrossRef] [MathSciNet] [Google Scholar]
- T.-P. Liu, Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108 (1987) 153-175. [Google Scholar]
- B.J. Lucier, A moving mesh numerical method for hyperbolic conservation laws. Math. Comp. 40 (1983) 91-106. [Google Scholar]
- J.J.H. Miller, E. O'Riordan and G.I. Shishkin, Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific Publishing Co., River Edge, NJ (1996). [Google Scholar]
- R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws. Comm. Pure Appl. Math. 8 (1996) 795-823. [Google Scholar]
- R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differential Equations 148 (1998) 292-317. [Google Scholar]
- H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- S. Osher and E. Tadmor, On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. [Google Scholar]
- B. Perthame, An introduction to kinetic schemes for gas dynamics, in: An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde (Eds.), Lect. Notes Comput. Sci. Eng. 5, Springer-Verlag (1998) 1-27. [Google Scholar]
- H.-G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems. Springer-Verlag, Berlin (1996). [Google Scholar]
- H.J. Schroll, A. Tveito and R. Winther, An L1 error bound for a semi-implicit difference scheme applied to a stiff system of conservation laws. SIAM J. Numer. Anal. 34 (1997) 1152-1166. [CrossRef] [MathSciNet] [Google Scholar]
- D. Serre, Relaxation semi linéaire et cinétique des systèmes de lois de conservation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 169-192. [Google Scholar]
- C.-W. Shu, Total-variation-diminishing time discretizations. SIAM J. Sci. Comput. 9 (1988) 1073-1084. [Google Scholar]
- C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439-471. [Google Scholar]
- T. Sonar and E. Süli, A dual graph-norm refinement indicator for finite volume approximations of the Euler equations. Numer. Math. 78 (1998) 619-658. [CrossRef] [MathSciNet] [Google Scholar]
- E. Süli, A-posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems, in: An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde (Eds.), Lect. Notes Comput. Sci. Eng. 5, Springer-Verlag (1998) 123-194 . [Google Scholar]
- A. Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comp. 53 (1989) 527-545. [CrossRef] [MathSciNet] [Google Scholar]
- A. Tzavaras, Viscosity and relaxation approximation for hyperbolic systems of conservation laws, in: An introduction to recent developments in theory and numerics for conservation laws, D. Kröner, M. Ohlberger and C. Rohde (Eds.), Lect. Notes Comput. Sci. Eng. 5, Springer-Verlag (1998) 73-122. [Google Scholar]
- A. Tzavaras, Materials with internal variables and relaxation to conservation laws. Arch. Rational Mech. Anal. 146 (1999) 129-155. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.