Issue |
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
|
|
---|---|---|
Page(s) | 1123 - 1149 | |
DOI | https://doi.org/10.1051/m2an:2000120 | |
Published online | 15 April 2002 |
Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
1
Mathématiques pour l'Industrie et la Physique, UMR 5640, INSA,
135 avenue de Rangueil, 31077 Toulouse Cedex 4, France. (Yves.Coudiere@sophia.inria.fr)
2
ONERA, Centre de Toulouse, 2 avenue Ed. Belin, 31055 Toulouse
Cedex 4, France. (Philippe.Villedieu@cert.fr)
Received:
19
October
1999
Revised:
28
June
2000
We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H1 finite volume space. We actually prove the convergence of the scheme in a discrete H1 norm, with an error estimate of order O(h) (on meshes of size h).
Mathematics Subject Classification: 65C20 / 65N12 / 65N15 / 76R50 / 45L10
Key words: Finite volumes / mesh refinement / convection-diffusion / convergence rate.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.