Free Access
Issue
ESAIM: M2AN
Volume 35, Number 3, May-June 2001
Page(s) 389 - 405
DOI https://doi.org/10.1051/m2an:2001121
Published online 15 April 2002
  1. S.A. Akhamanov, A.P. Sukhonorov and R.V. Khoklov, Self-focusing and self-trapping of intense light beams in a nonlinear medium. Sov. Phys. JETP 23 (1966) 1025-1033.
  2. G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115-124. [CrossRef] [MathSciNet]
  3. G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31-53. [CrossRef] [MathSciNet]
  4. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15, Springer-Verlag, New York (1994).
  5. H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations. Nonlinear Analysis 4 (1980) 677-681. [CrossRef] [MathSciNet]
  6. T. Cazenave and A. Haraux, Introduction aux problémes d'évolution semi-linéaires. Ellipses, Paris (1990).
  7. R.Y. Chiao, E. Garmire and C. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13 (1964) 479-482. [CrossRef]
  8. A. Cloot, B.M. Herbst and J.A.C. Weideman, A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys. 86 (1990) 127-146. [CrossRef] [MathSciNet]
  9. Z. Fei, V.M. Pérez-García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177. [CrossRef] [MathSciNet]
  10. Y. Jingqi, Time decay of the solutions to a nonlinear Schrödinger equation in an exterior domain in Formula . Nonlinear Analysis 19 (1992) 563-571. [CrossRef] [MathSciNet]
  11. O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377-400. [CrossRef] [MathSciNet]
  12. O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. [CrossRef] [MathSciNet]
  13. H.Y. Lee, Fully discrete methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 28 (1994) 9-24. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  14. H.A. Levine, The role of critical exponents in blowup theorems. SIAM Review 32 (1990) 262-288. [CrossRef] [MathSciNet]
  15. H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity. J. Math. Soc. Japan 46 (1994) 557-586. [CrossRef] [MathSciNet]
  16. A.C. Newell, Solitons in mathematics and mathematical physics. CBMS Appl. Math. Ser. 48, SIAM, Philadelphia (1988).
  17. J.J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I: A general review. Physica Scripta 33 (1986) 481-497. [CrossRef] [MathSciNet]
  18. M.P. Robinson and G. Fairweather, Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68 (1994) 355-376. [CrossRef] [MathSciNet]
  19. K. Rypdal and J.J. Rasmussen, Blow-up in nonlinear Schroedinger equations-II: Similarity structure of the blow-up singularity. Physica Scripta 33 (1986) 498-504. [CrossRef] [MathSciNet]
  20. J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp. 43 (1984) 21-27. [CrossRef] [MathSciNet]
  21. W.A. Strauss, Nonlinear wave equations. CBMS Regional Conference Series Math. No. 73, AMS, Providence, RI (1989).
  22. V.I. Talanov, Self-focusing of wave beams in nonlinear media. JETP Lett. 2 (1965) 138-141.
  23. V. Thomée, Galerkin finite-element methods for parabolic problems. Springer Series Comput. Math. 25, Springer-Verlag, Berlin, Heidelberg (1997).
  24. Y. Tourigny, Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11 (1991) 509-523. [CrossRef] [MathSciNet]
  25. M. Tsutsumi and N. Hayashi, Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math. Z. 177 (1981) 217-234. [CrossRef] [MathSciNet]
  26. V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972) 908-922.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you