Free Access
Volume 35, Number 3, May-June 2001
Page(s) 389 - 405
Published online 15 April 2002
  1. S.A. Akhamanov, A.P. Sukhonorov and R.V. Khoklov, Self-focusing and self-trapping of intense light beams in a nonlinear medium. Sov. Phys. JETP 23 (1966) 1025-1033. [Google Scholar]
  2. G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115-124. [CrossRef] [MathSciNet] [Google Scholar]
  3. G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31-53. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15, Springer-Verlag, New York (1994). [Google Scholar]
  5. H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations. Nonlinear Analysis 4 (1980) 677-681. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Cazenave and A. Haraux, Introduction aux problémes d'évolution semi-linéaires. Ellipses, Paris (1990). [Google Scholar]
  7. R.Y. Chiao, E. Garmire and C. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13 (1964) 479-482. [CrossRef] [Google Scholar]
  8. A. Cloot, B.M. Herbst and J.A.C. Weideman, A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys. 86 (1990) 127-146. [CrossRef] [MathSciNet] [Google Scholar]
  9. Z. Fei, V.M. Pérez-García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177. [CrossRef] [MathSciNet] [Google Scholar]
  10. Y. Jingqi, Time decay of the solutions to a nonlinear Schrödinger equation in an exterior domain in Formula . Nonlinear Analysis 19 (1992) 563-571. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377-400. [CrossRef] [MathSciNet] [Google Scholar]
  12. O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. [Google Scholar]
  13. H.Y. Lee, Fully discrete methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 28 (1994) 9-24. [CrossRef] [MathSciNet] [Google Scholar]
  14. H.A. Levine, The role of critical exponents in blowup theorems. SIAM Review 32 (1990) 262-288. [CrossRef] [MathSciNet] [Google Scholar]
  15. H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity. J. Math. Soc. Japan 46 (1994) 557-586. [CrossRef] [MathSciNet] [Google Scholar]
  16. A.C. Newell, Solitons in mathematics and mathematical physics. CBMS Appl. Math. Ser. 48, SIAM, Philadelphia (1988). [Google Scholar]
  17. J.J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I: A general review. Physica Scripta 33 (1986) 481-497. [Google Scholar]
  18. M.P. Robinson and G. Fairweather, Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68 (1994) 355-376. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Rypdal and J.J. Rasmussen, Blow-up in nonlinear Schroedinger equations-II: Similarity structure of the blow-up singularity. Physica Scripta 33 (1986) 498-504. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp. 43 (1984) 21-27. [CrossRef] [MathSciNet] [Google Scholar]
  21. W.A. Strauss, Nonlinear wave equations. CBMS Regional Conference Series Math. No. 73, AMS, Providence, RI (1989). [Google Scholar]
  22. V.I. Talanov, Self-focusing of wave beams in nonlinear media. JETP Lett. 2 (1965) 138-141. [Google Scholar]
  23. V. Thomée, Galerkin finite-element methods for parabolic problems. Springer Series Comput. Math. 25, Springer-Verlag, Berlin, Heidelberg (1997). [Google Scholar]
  24. Y. Tourigny, Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11 (1991) 509-523. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Tsutsumi and N. Hayashi, Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math. Z. 177 (1981) 217-234. [CrossRef] [MathSciNet] [Google Scholar]
  26. V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972) 908-922. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you