Free Access
Volume 35, Number 4, July-August 2001
Page(s) 647 - 673
Published online 15 April 2002
  1. Y. Achdou, G. Abdoulaev, Y. Kutznetsov and C. Prud'homme, On the parallel inplementation of the mortar element method. ESAIM: M2AN 33 (1999) 245-259. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Anderson, N. Hall, B. Jawerth and G. Peters, Wavelets on closed subsets on the real line, in Topics in the theory and applications of wavelets, L.L. Schumaker and G. Webb, Eds., Academic Press, Boston (1993) 1-61. [Google Scholar]
  3. F. Ben Belgacem, The mortar finite element method with Lagrange multiplier. Numer. Math. 84 (1999) 173-197. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ben Belgacem, A. Buffa and Y. Maday, The mortar element method for 3D Maxwell's equations. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 903-908. [Google Scholar]
  5. F. Ben Belgacem and Y. Maday, Non conforming spectral method for second order elliptic problems in 3D. East-West J. Numer. Math. 4 (1994) 235-251. [Google Scholar]
  6. C. Bernardi, Y. Maday, C. Mavripilis and A.T. Patera, The mortar element method applied to spectral discretizations, in Finite element analysis in fluids. Proc. of the seventh international conference on finite element methods in flow problems, T. Chung and G. Karr, Eds., UAH Press (1989). [Google Scholar]
  7. C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey, Eds., N.A.T.O. ASI Ser. C 384 . [Google Scholar]
  8. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar XI, H. Brezis and J.L.Lions, Eds. (1994) 13-51. [Google Scholar]
  9. S. Bertoluzza, An adaptive wavelet collocation method based on interpolating wavelets, in Multiscale wavelet methods for partial differential equations. W. Dahmen, A.J. Kurdila and P. Oswald, Eds., Academic Press 6 (1997) 109-135. [Google Scholar]
  10. S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. Technical Report 99-17, LAGA, Université Paris 13 (1999). [Google Scholar]
  11. S. Bertoluzza and P. Pietra, Space frequency adaptive approximation for quantum hydrodynamic models. Transport Theory Statist. Phys. 28 (2000) 375-395. [CrossRef] [Google Scholar]
  12. D. Braess and W. Dahmen, Stability estimate of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-264. [MathSciNet] [Google Scholar]
  13. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). [Google Scholar]
  14. C. Canuto and A. Tabacco, Multilevel decomposition of functional spaces. J. Fourier Anal. Appl. 3 (1997) 715-742. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Canuto, A. Tabacco and K. Urban, The wavelet element method. Part I: Construction and analysis. Appl. Comput. Harmon. Anal. ACHA 6 (1999) 1-52. [Google Scholar]
  16. L. Cazabeau, C. Lacour and Y. Maday, Numerical quadratures and mortar methods, in Computational Sciences for the 21st Century, Bristeau et al., Eds., John Wiley & Sons, New York (1997) 119-128. [Google Scholar]
  17. P. Charton and V. Perrier, A pseudo-wavelet scheme for the two-dimensional Navier-Stokes equation. Comput. Appl. Math. 15 (1996) 139-160. [Google Scholar]
  18. G. Chiavassa and J. Liandrat, On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval. Appl. Comput. Harmon. Anal. ACHA 4 (1997) 62-73. [CrossRef] [Google Scholar]
  19. A. Cohen, I. Daubechies and P. Vial, Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. ACHA 1 (1993) 54-81. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Cohen and R. Masson, Wavelet methods for second order elliptic problems, preconditioning and adaptivity. SIAM J. Sci. Comput. 21 (1999) 1006-1026. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Cohen and R. Masson, Wavelet adaptive method for second order elliptic problems. boundary conditions and domain decomposition. Numer. Math. 86 (1999) 193-238. [CrossRef] [Google Scholar]
  22. S. Dahlke, W. Dahmen ans R. Hochmut and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23 (1997) 21-48. [CrossRef] [MathSciNet] [Google Scholar]
  23. W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2 (1996) 341-361. [MathSciNet] [Google Scholar]
  24. W. Dahmen and A. Kunoth, Multilevel preconditioning. Numer. Math. 63 (1992) 315-344. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline-wavelets on the interval - stability and moment condition. Appl. Comput. Harmon. Anal. ACHA 6 (1999) 132-196. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Dahmen and R. Schneider, Composite wavelet bases for operator equations. Math. Comp. 68 (1999) 1533-1567. [CrossRef] [MathSciNet] [Google Scholar]
  27. I. Daubechies, Ten lectures on wavelets, in CBMS-NSF Regional Conference Series in Applied Mathematics 61. SIAM, Philadelphia (1992). [Google Scholar]
  28. S. Jaffard, Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal. 29 (1992) 965-986. [CrossRef] [MathSciNet] [Google Scholar]
  29. Y. Maday, V. Perrier and J.C. Ravel, Adaptivité dynamique sur bases d'ondelettes pour l'approximation d'équations aux dérivées partielles. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 405-410. [Google Scholar]
  30. R. Masson, Biorthogonal spline wavelets on the interval for the resolution of boundary problems. M 3AS (Math. Models Methods Appl. Sci.) 6 (1996) 749-791. [Google Scholar]
  31. Y. Meyer, Ondelettes et opérateurs. Hermann, Paris (1990). [Google Scholar]
  32. P. Monasse and V. Perrier, Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J. Math. Anal. 29 (1998) 1040-1065. [CrossRef] [MathSciNet] [Google Scholar]
  33. C. Prud'homme, A strategy for the resolution of the tridimensional incompressible Navier-Stokes equations, in Méthodes itératives de décomposition de domaines et communications en calcul parallèle. Calcul. Parallèles Réseaux Syst. Répartis 10 Hermès (1998) 371-380. [Google Scholar]
  34. S. Grivet Talocia and A. Tabacco, Wavelets on the interval with optimal localization. M 3AS (Math. Models Methods Appl. Sci.) 10 (2000) 441-462. [Google Scholar]
  35. H. Triebel, Interpolation theory, function spaces, differential operators. North Holland-Elsevier Science Publishers, Amsterdam (1978). [Google Scholar]
  36. B. Wohlmut, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you