Free Access
Volume 35, Number 4, July-August 2001
Page(s) 825 - 848
Published online 15 April 2002
  1. V.I. Agoshkov and V.I. Lebedev, Poincaré-Steklov operators and the methods of partition of the domain in variational problems, in Vychisl. Protsessy Sist. (Computational processes and systems), G.I. Marchuk, Ed., Nauka, Moscow 2 (1985) 173-227 (in Russian). [Google Scholar]
  2. A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of H(rot;Ω) and the construction of an extension operator. Manuscripta Math. 89 (1996) 159-178. [Google Scholar]
  3. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp. 68 (1999) 607-631. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 143 (1997) 97-112. [Google Scholar]
  5. A. Alonso, R.L. Trotta and A. Valli, Coercive domain decomposition algorithms for advection-diffusion equations and systems. J. Comput. Appl. Math. 96 (1998) 51-76. [CrossRef] [MathSciNet] [Google Scholar]
  6. L.C. Berselli, Some topics in fluid mechanics. Ph.D. thesis, Dipartimento di Matematica, Università di Pisa, Italy (1999). [Google Scholar]
  7. L.C. Berselli and F. Saleri, New substructuring domain decomposition methods for advection-diffusion equations. J. Comput. Appl. Math. 116 (2000) 201-220. [CrossRef] [MathSciNet] [Google Scholar]
  8. P.E. Bjørstad and O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1097-1120. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris (1993). [Google Scholar]
  10. J.-F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in Domain Decomposition Methods, T.F. Chan et al., Eds., SIAM, Philadelphia (1989) 3-16. [Google Scholar]
  11. J.H. Bramble, J.E. Pasciak and A.H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures. Math. Comp. 46 (1986) 361-369. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9-30. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31-48. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Cessenat, Mathematical methods in electromagnetism: Linear theory and applications. World Scientific Pub. Co., Singapore (1996). [Google Scholar]
  15. P. Collino, G. Delbue, P. Joly and A. Piacentini, A new interface condition in the non-overlapping domain decomposition method for the Maxwell equation. Comput. Methods Appl. Mech. Engrg. 148 (1997) 195-207. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Després, P. Joly and J.E. Roberts, A domain decomposition method for the harmonic Maxwell equation, in Iterative Methods in Linear Algebra, R. Beaurvens and P. de Groen, Eds., North Holland, Amsterdam (1992) 475-484. [Google Scholar]
  17. S. Kim, Domain decomposition iterative procedures for solving scalar waves in the frequency domain. Numer. Math. 79 (1998) 231-259. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Leis, Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Mechanics 11, H. Zorski, Ed., Pitman, London (1979) 187-203. [Google Scholar]
  19. L.D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575-598. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations. Oxford University Press, Oxford (1999). [Google Scholar]
  24. J.E. Santos, Global and domain-decomposed mixed methods for the solution of Maxwell's equations with application to magnetotellurics. Numer. Methods. Partial Differ. Equations 14 (1998) 407-437. [CrossRef] [Google Scholar]
  25. A. Toselli, Domain decomposition methods for vector field problems. Ph.D. thesis, Courant Institute, New York University, New York (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you