Free Access
Volume 35, Number 5, September-October 2001
Page(s) 945 - 980
Published online 15 April 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. A. Ait Ou Amni and M. Marion, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 62 (1994) 189-213. [Google Scholar]
  3. D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. [Google Scholar]
  4. I. Babuska, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. [CrossRef] [Google Scholar]
  5. S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). [Google Scholar]
  6. F. Brezzi, On the existence, uniqueness and approximation of saddle-points problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129-151. [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  8. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745-762. [Google Scholar]
  9. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). [Google Scholar]
  10. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955). [Google Scholar]
  11. M. Crouzeix, Étude d'une méthode de linéarisation. Résolution numérique des équations de Stokes stationnaires. Application aux équations de Navier-Stokes stationnaires, in Approximation et méthodes itératives de résolution d'inéquations variationnelles et de problèmes non linéaires, in IRIA, Cahier 12, Le Chesnay (1974) 139-244. [Google Scholar]
  12. M. Dauge, Stationary Stokes and Navier-Stokes systems on two or three-dimensional domains with corners. SIAM J. Math. Anal. 20 (1989) 74-97. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Dupont and L.R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34 (1980) 441-463. [Google Scholar]
  14. C. Foias, O. Manley and R. Temam, Modelization of the interaction of small and large eddies in two dimensional turbulent flows. RAIRO Modél. Anal. Numér. 22 (1988) 93-114. [Google Scholar]
  15. B. Garcia-Archilla and E. Titi, Postprocessing the Galerkin method: the finite-element case. SIAM J. Numer. Anal. 37 (2000) 470-499. [CrossRef] [MathSciNet] [Google Scholar]
  16. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25-57. [Google Scholar]
  17. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, in Lecture Notes in Mathematics 749, Springer-Verlag, Berlin, Heidelberg, New York (1979). [Google Scholar]
  18. V. Girault and P.A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin, Heidelberg, New York (1986). [Google Scholar]
  19. R. Glowinski, Finite element methods for the numerical simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes equations. To appear in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam. [Google Scholar]
  20. P. Grisvard, Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24, Pitman, Boston (1985). [Google Scholar]
  21. J. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980) 639-681. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Heywood and R. Rannacher, Finite element approximation of the nonstationnary Navier-Stokes problem. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311. [Google Scholar]
  23. O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow. In Russian (1961). First English translation, Gordon & Breach, Eds., New York (1963). [Google Scholar]
  24. W. Layton, A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26 (1993) 33-38. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Layton and W. Lenferink, Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Appl. Math. Comput. 69 (1995) 263-274. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Layton and W. Lenferink, A Multilevel mesh independence principle for the Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 17-30. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1-82. [Google Scholar]
  28. J. Leray, Essai sur des mouvements plans d'un liquide visqueux que limitent des parois. J. Math. Pures Appl. 13 (1934) 331-418. [Google Scholar]
  29. J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934) 193-248. [Google Scholar]
  30. J.-L. Lions, Équations différentielles opérationnelles 111. Springer-Verlag, Berlin, Heidelberg, New York (1961). [Google Scholar]
  31. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  32. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968). [Google Scholar]
  33. P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Fluids. Oxford University Press, Oxford (1996). [Google Scholar]
  34. P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Fluids. Oxford University Press, Oxford (1998). [Google Scholar]
  35. P.-L. Lions, On some challenging problems in nonlinear partial differential equations, in Mathematics: Frontiers and Perspectives; Amer. Math. Soc., Providence, RI (2000) 121-135. [Google Scholar]
  36. M. Marion and R. Temam, Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26 (1989) 1139-1157. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Marion and R. Temam, Nonlinear Galerkin methods: the finite element case. Numer. Math. 57 (1990) 1-22. [CrossRef] [MathSciNet] [Google Scholar]
  38. M. Marion and R. Temam, Navier-Stokes equations: theory and approximation, in Handbook of Numerical Analysis. Vol. VI, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam (1998) 503-688. [Google Scholar]
  39. J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
  40. A. Niemistö, FE-approximation of unconstrained optimal control like problems. Report No. 70. University of Jyväskylä (1995). [Google Scholar]
  41. O. Pironneau, Finite Element Methods for Fluids. Wiley, Chichester (1989). [Google Scholar]
  42. L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. [Google Scholar]
  43. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979). [Google Scholar]
  44. R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115-152. [Google Scholar]
  45. J. Xu, A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231-237. [CrossRef] [MathSciNet] [Google Scholar]
  46. J. Xu, Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759-1777. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you