Free Access
Issue
ESAIM: M2AN
Volume 35, Number 6, November/December 2001
Page(s) 1111 - 1136
DOI https://doi.org/10.1051/m2an:2001150
Published online 15 April 2002
  1. S. Clain, Analyse mathématique et numérique d'un modèle de chauffage par induction. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (1994). [Google Scholar]
  2. S. Clain and R. Touzami, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845-870. [MathSciNet] [Google Scholar]
  3. J. Cousteix, Turbulence et couche limite. Cepadues, Ed., Toulouse (1990). [Google Scholar]
  4. R. Dautrey and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Ed., Paris (1988). [Google Scholar]
  5. G. de Rham, Variétés différientiables. Hermann, Paris (1960). [Google Scholar]
  6. T. Gallouët and R. Herbin, Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 2 (1994) 49-55. [Google Scholar]
  7. T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosities. To appear in J. Non-Linear Anal. TMA. [Google Scholar]
  8. M. Gómez Mármol and F. Ortegón Gallego, Existence of Solution to Non-Linear Elliptic Systems Arising in Turbulence Modelling. M 3AS (Math. Models Methods Appl. Sci.) 10 (2000) 247-260. [Google Scholar]
  9. M. Gómez Mármol and F. Ortegón Gallego, Coupling the Stokes and Navier-Stokes Equations with Two Scalar Nonlinear Parabolic Equations. ESAIM: M2AN 33 (1999) 157-167 [Google Scholar]
  10. R. Lewandowski and B. Mohammadi, Existence and Positivity Results for the Φ - θ and a Modified k - ε Turbulence Models. M 3AS (Math. Models Methods Appl. Sci.) 3 (1993) 195-215. [Google Scholar]
  11. R. Lewandowski, Analyse mathématique et océanographie. Masson, Ed., Paris (1997). [Google Scholar]
  12. R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. J. Non-Linear Anal. TMA 28 (1997) 393-417. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villard, Eds., Dunod, Paris (1969). [Google Scholar]
  14. B. Mohammadi and G. Puigt, Generalized Wall Functions for High-Speed Separated Flows over Adiabatic and Isothermal Walls. To appear in Internat. J. Comput. Fluid Dyn. [Google Scholar]
  15. B. Mohammadi, A Stable Algorithm for the k - ε Model for Compressible Flows. INRIA, Report No. 1335 (1990). [Google Scholar]
  16. B. Mohammadi and O. Pironneau, Analysis of the k - ε turbulence model. Wiley-Masson, Eds., Paris (1994). [Google Scholar]
  17. V.C. Patel, W. Rhodi and G. Scheuerer, Turbulence models for near-wall and low-Reynolds number flows: a review. AIAA J. 23 (1984) 1308-1319. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Temam, Infinite Dimensional Systems in Mechanics and Physics. 2nd edn., Springer-Verlag, Eds., Berlin, Heidelberg, New York (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you