Free Access
Volume 35, Number 6, November/December 2001
Page(s) 1079 - 1109
Published online 15 April 2002
  1. M. Ainsworth and I. Babuska, Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331-353. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Ainsworth and J. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000). [Google Scholar]
  3. L. Angermann, Balanced a-posteriori error estimates for finite volume type discretizations of convection-dominated elliptic problems. Computing 55 (1995) 305-323. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Babuska and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736-754. [CrossRef] [MathSciNet] [Google Scholar]
  7. N.S. Bakhvalov, Optimization of methods for the solution of boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969) 841-859. In Russian. [Google Scholar]
  8. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283-301. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Beckers, Numerical Integration in High Dimensions. Ph.D. Thesis, Katholieke Universiteit Leuven / Louvain, Belgium (1992). [Google Scholar]
  10. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). [Google Scholar]
  11. M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. ETNA, Electron. Trans. Numer. Anal. 8 (1999) 36-45. [Google Scholar]
  12. P. Keast, Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339-348. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes. Logos Verlag, Berlin (1999). Also Ph.D. Thesis, TU Chemnitz, [Google Scholar]
  14. G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471-490. DOI 10.1007/s002110000170. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Kunert, Towards anisotropic mesh construction and error estimation in the finite element method. To appear in Numer. Meth. Partial Differential Equations. Preprint SFB393/00_01, TU Chemnitz (2000). Also [Google Scholar]
  16. G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668-689. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Kunert, A note on the energy norm for a singularly perturbed model problem. Preprint SFB393/01-02, TU Chemnitz (2001). Also [Google Scholar]
  18. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. To appear in Adv. Comp. Math. [Google Scholar]
  19. G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283-303. DOI 10.1007/s002110000152. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, Adaptive remeshing for compressible flow computation. J. Comput. Phys. 72 (1987) 449-466. [CrossRef] [Google Scholar]
  21. W. Rick, H. Greza and W. Koschel, FCT-solution on adapted unstructured meshes for compressible high speed flow computations. in Flow Simulation with High-Performance Computers I, in Notes Numer. Fluid Mech. 38, E.H. Hirschel, Ed., Vieweg (1993) 334-438 . [Google Scholar]
  22. H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer, Berlin (1996). [Google Scholar]
  23. K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996). [Google Scholar]
  26. R. Verfürth, Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations. Numer. Math. 78 (1998) 479-493. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Vilsmeier and D. Hänel, Computational aspects of flow simulation in three dimensional, unstructured, adaptive grids, in Flow Simulation with High-Performance Computers II, in Notes Numer. Fluid Mech. 52, E.H. Hirschel, Ed., Vieweg (1996) 431-44. [Google Scholar]
  28. O.C. Zienkiewicz and J. Wu, Automatic directional refinement in adaptive analysis of compressible flows. Internat. J. Numer. Methods Engrg. 37 (1994) 2189-2210 . [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you