Free Access
Issue
ESAIM: M2AN
Volume 35, Number 6, November/December 2001
Page(s) 1079 - 1109
DOI https://doi.org/10.1051/m2an:2001149
Published online 15 April 2002
  1. M. Ainsworth and I. Babuska, Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331-353. [CrossRef] [MathSciNet]
  2. M. Ainsworth and J. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000).
  3. L. Angermann, Balanced a-posteriori error estimates for finite volume type discretizations of convection-dominated elliptic problems. Computing 55 (1995) 305-323. [CrossRef] [MathSciNet]
  4. T. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. [CrossRef] [MathSciNet]
  5. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. [CrossRef] [MathSciNet]
  6. I. Babuska and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736-754. [CrossRef] [MathSciNet]
  7. N.S. Bakhvalov, Optimization of methods for the solution of boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969) 841-859. In Russian.
  8. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283-301. [CrossRef] [MathSciNet]
  9. M. Beckers, Numerical Integration in High Dimensions. Ph.D. Thesis, Katholieke Universiteit Leuven / Louvain, Belgium (1992).
  10. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
  11. M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. ETNA, Electron. Trans. Numer. Anal. 8 (1999) 36-45.
  12. P. Keast, Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339-348. [CrossRef] [MathSciNet]
  13. G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes. Logos Verlag, Berlin (1999). Also Ph.D. Thesis, TU Chemnitz,
  14. G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471-490. DOI 10.1007/s002110000170. [CrossRef] [MathSciNet]
  15. G. Kunert, Towards anisotropic mesh construction and error estimation in the finite element method. To appear in Numer. Meth. Partial Differential Equations. Preprint SFB393/00_01, TU Chemnitz (2000). Also
  16. G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668-689. [CrossRef] [MathSciNet]
  17. G. Kunert, A note on the energy norm for a singularly perturbed model problem. Preprint SFB393/01-02, TU Chemnitz (2001). Also
  18. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. To appear in Adv. Comp. Math.
  19. G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283-303. DOI 10.1007/s002110000152. [CrossRef] [MathSciNet]
  20. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, Adaptive remeshing for compressible flow computation. J. Comput. Phys. 72 (1987) 449-466. [CrossRef]
  21. W. Rick, H. Greza and W. Koschel, FCT-solution on adapted unstructured meshes for compressible high speed flow computations. in Flow Simulation with High-Performance Computers I, in Notes Numer. Fluid Mech. 38, E.H. Hirschel, Ed., Vieweg (1993) 334-438 .
  22. H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer, Berlin (1996).
  23. K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. [CrossRef] [MathSciNet]
  24. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. [CrossRef] [MathSciNet]
  25. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996).
  26. R. Verfürth, Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations. Numer. Math. 78 (1998) 479-493. [CrossRef] [MathSciNet]
  27. R. Vilsmeier and D. Hänel, Computational aspects of flow simulation in three dimensional, unstructured, adaptive grids, in Flow Simulation with High-Performance Computers II, in Notes Numer. Fluid Mech. 52, E.H. Hirschel, Ed., Vieweg (1996) 431-44.
  28. O.C. Zienkiewicz and J. Wu, Automatic directional refinement in adaptive analysis of compressible flows. Internat. J. Numer. Methods Engrg. 37 (1994) 2189-2210 . [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you