Free Access
Issue
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
Page(s) 143 - 153
DOI https://doi.org/10.1051/m2an:2002006
Published online 15 April 2002
  1. H.W. Alt and S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations. Math. Z. 183 (1983) 311-341. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Bauschke, The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 (1996) 150-159. [CrossRef] [MathSciNet] [Google Scholar]
  3. Ph. Bénilan and K. Ha, Equation d'évolution du type Formula dans L(Ω). C.R. Acad. Sci. Paris Sér. A 281 (1975) 947-950. [Google Scholar]
  4. A. Berger, H. Brézis and J. Rogers, A numerical method for solving the problem Formula . RAIRO Anal. Numér. 13 (1979) 297-312. [MathSciNet] [Google Scholar]
  5. Ph. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems. Adv. Differential Equations 1 (1996) 1053-1073. [MathSciNet] [Google Scholar]
  6. Ph. Bénilan and P. Wittbold, Sur un problème parabolique-elliptique. ESAIM: M2AN 33 (1999) 121-127 . [CrossRef] [EDP Sciences] [Google Scholar]
  7. P. Colli, On Some Doubly Nonlinear Evolution Equations in Banach Spaces. Technical Report 775, Università di Pavia, Istituto di Analisi Numerica (1991). [Google Scholar]
  8. P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (1990) 737-756. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Halpern, Fixed points of nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 957-961. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. Jäger and J. Kacur, Solution of Porous Medium Type Systems by Linear Approximation Schemes. Numer. Math. 60 (1991) 407-427. [MathSciNet] [Google Scholar]
  11. W. Jäger and J. Kacur, Solution of Doubly Nonlinear and Degenerate Parabolic Problems by Relaxation Schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. [MathSciNet] [Google Scholar]
  12. J. Kacur, Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM J. Numer. Anal. 36 (1999) 290-316. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Kacur, A. Handlovicová and M. Kacurová, Solution of Nonlinear Diffusion Problems by Linear Approximation Schemes. SIAM J. Numer. Anal. 30 (1993) 1703-1722. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969). [Google Scholar]
  15. P.-L. Lions, Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Sér. A. 284 (1977) 1357-1359. [Google Scholar]
  16. E. Magenes, R.H. Nochetto and C. Verdi, Energy Error Estimates for a Linear Scheme to Approximate Nonlinear Parabolic Problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655-678. [MathSciNet] [Google Scholar]
  17. E. Maitre, Sur une classe d'équations à double non linéarité : application à la simulation numérique d'un écoulement visqueux compressible. Thèse, Université Grenoble I (1997). [Google Scholar]
  18. E. Maitre and P. Witomski, A pseudomonotonicity adapted to doubly nonlinear elliptic-parabolic equations. Nonlinear Anal. TMA (to appear). [Google Scholar]
  19. F. Otto, L1-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations. J. Differential Equations 131 (1996) 20-38. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Simondon, Sur l'équation Formula par la méthode des semi-groupes dans L1. Séminaire d'analyse non linéaire, Laboratoire de Mathématiques de Besançon (1984). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you