Free Access
Issue
ESAIM: M2AN
Volume 36, Number 3, May/June 2002
Page(s) 397 - 425
DOI https://doi.org/10.1051/m2an:2002019
Published online 15 August 2002
  1. A. Abdulle, Fourth Order Chebyshev Methods with Recurrence Relation. SIAM J. Sci. Comput. 23 (2002) 2041-2054. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Abdulle and A. Medovikov, Second Order Chebyshev Methods Based on Orthogonal Polynomials. Numer. Math. 90 (2001) 1-18. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Arminjon and M.-C. Viallon, Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C. R. Acad. Sci. Paris Sér. I Math. t. 320 (1995) 85-88. [Google Scholar]
  4. P. Arminjon, M.-C. Viallon and A. Madrane, A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Audusse, M.O. Bristeau and B. Perthame, Kinetic Schemes for Saint-Venant Equations With Source Terms on Unstructured Grids. INRIA Report RR-3989 (2000). [Google Scholar]
  6. A. Bermudez and M.E. Vasquez, Upwind Methods for Hyperbolic Conservation Laws With Source Terms. Comput. & Fluids 23 (1994) 1049-1071. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Bianco, G. Puppo and G. Russo, High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comput. 21 (1999) 294-322. [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Buffard, T. Gallouët and J.-M. Hérard, A Sequel to a Rough Godunov Scheme. Application to Real Gas Flows. Comput. & Fluids 29-7 (2000) 813-847. [Google Scholar]
  9. S. Gottlieb, C.-W. Shu and E. Tadmor, High Order Time Discretization Methods with the Strong Stability Property. SIAM Rev. 43 (2001) 89-112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  10. K.O. Friedrichs and P.D. Lax, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. USA 68 (1971) 1686-1688. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. T. Gallouët, J.-M. Hérard and N. Seguin, Some Approximate Godunov Schemes to Compute Shallow-Water Equations with Topography. Computers and Fluids (to appear). [Google Scholar]
  12. J.F. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. [Google Scholar]
  13. L. Gosse, A Well-Balanced Scheme Using Non-Conservative Products Designed for Hyperbolic Systems of Conservation Laws With Source Terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III. J. Comput. Phys. 71 (1987) 231-303. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  15. G.-S. Jiang and E. Tadmor, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Jin, A Steady-state Capturing Method for Hyperbolic System with Geometrical Source Terms. ESAIM: M2AN 35 (2001) 631-645. [CrossRef] [EDP Sciences] [Google Scholar]
  17. A. Kurganov and D. Levy, A Third-Order Semi-Discrete Scheme for Conservation Laws and Convection-Diffusion Equations. SIAM J. Sci. Comput. 22 (2000) 1461-1488. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Kurganov, S. Noelle and G. Petrova, Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. 23 (2001) 707-740. [Google Scholar]
  19. A. Kurganov and G. Petrova, A Third-Order Semi-Discrete Genuinely Multidimensional Central Scheme for Hyperbolic Conservation Laws and Related Problems. Numer. Math. 88 (2001) 683-729. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Kurganov and G. Petrova, Central Schemes and Contact Discontinuities. ESAIM: M2AN 34 (2000) 1259-1275. [CrossRef] [EDP Sciences] [Google Scholar]
  21. A. Kurganov and E. Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (2000) 214-282. [Google Scholar]
  22. B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method. J. Comput. Phys. 32 (1979) 101-136. [Google Scholar]
  23. R.J. LeVeque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comput. Phys. 146 (1998) 346-365. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. R.J. LeVeque and D.S. Bale, Wave Propagation Methods for Conservation Laws with Source Terms, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 609-618. [Google Scholar]
  25. D. Levy, G. Puppo and G. Russo, Central WENO Schemes for Hyperbolic Systems of Conservation Laws. ESAIM: M2AN 33 (1999) 547-571. [CrossRef] [EDP Sciences] [Google Scholar]
  26. D. Levy, G. Puppo and G. Russo, Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM J. Sci. Comput. 22 (2000) 656-672. [CrossRef] [MathSciNet] [Google Scholar]
  27. S.F. Liotta, V. Romano and G. Russo, Central Schemes for Systems of Balance Laws, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 651-660. [Google Scholar]
  28. X.-D. Liu and S. Osher, Nonoscillatory High Order Accurate Self Similar Maximum Principle Satisfying Shock Capturing Schemes. I. SIAM J. Numer. Anal. 33 (1996) 760-779. [CrossRef] [MathSciNet] [Google Scholar]
  29. X.-D. Liu, S. Osher and T. Chan, Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys. 115 (1994) 200-212. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  30. X.-D. Liu and E. Tadmor, Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws. Numer. Math. 79 (1998) 397-425. [CrossRef] [MathSciNet] [Google Scholar]
  31. A. Medovikov, High Order Explicit Methods for Parabolic Equations. BIT 38 (1998) 372-390. [CrossRef] [MathSciNet] [Google Scholar]
  32. H. Nessyahu and E. Tadmor, Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comput. Phys. 87 (1990) 408-463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  33. S. Noelle, A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-Dimensional Compressible Euler Equations, Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 129 (1999) 757-766. [Google Scholar]
  34. B. Perthame and C. Simeoni, A Kinetic Scheme for the Saint-Venant System with a Source Term. École Normale Supérieure, Report DMA-01-13. Calcolo 38 (2001) 201-301. [CrossRef] [MathSciNet] [Google Scholar]
  35. G. Russo, Central Schemes for Balance Laws, Proceedings of HYP2000. Magdeburg (to appear). [Google Scholar]
  36. A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154. [Google Scholar]
  37. C.-W. Shu, Total-Variation-Diminishing Time Discretizations. SIAM J. Sci. Comput. 6 (1988) 1073-1084. [Google Scholar]
  38. C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. J. Comput. Phys. 77 (1988) 439-471. [Google Scholar]
  39. P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  40. E. Tadmor, Convenient Total Variation Diminishing Conditions for Nonlinear Difference Schemes. SIAM J. Numer. Anal. 25 (1988) 1002-1014. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you