Free Access
Volume 36, Number 3, May/June 2002
Page(s) 517 - 536
Published online 15 August 2002
  1. T. Amari, J.F. Luciani and P. Joly, A preconditioned semi-implicit method for magnetohydrodynamics equation. SIAM J. Sci. Comput. 21 (1999) 970-986. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Ser. Comput. Math. 15 (1991). [Google Scholar]
  3. A. Bossavit, Electromagnétisme en vue de la modélisation. SMAI/Springer-Verlag, Paris, Math. Appl. 14 (1993). See also Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press (1998). [Google Scholar]
  4. H. Brezis, Analyse fonctionnelle. Masson, Paris (1991). [Google Scholar]
  5. P. Clément, Approximation by finite element functions using local regularization. Anal. Numér. 9 (1975) 77-84. [Google Scholar]
  6. M. Costabel, A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157 (1991) 527-541. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.L. Dudley and R.W. James, time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. London A425 (1989) 407-429. [Google Scholar]
  8. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). [CrossRef] [MathSciNet] [Google Scholar]
  9. J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83-111. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-L. Guermond, J. Léorat and C. Nore, Numerical simulations of 2D MHD problems using Lagrange finite elements (in preparation 2001). [Google Scholar]
  11. J.-L. Guermond and P.D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case (submitted 2002). [Google Scholar]
  12. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Springer Ser. Comput. Math. 5 (1986). [Google Scholar]
  13. J. Léorat, Numerical simulations of cylindrical dynamos: scope and method. In 7th beer-Sheva Onternatal seminar, Vol. 162, pp. 282-292. AIAA Progress in Astronautics and aeronautic series, 1994. [Google Scholar]
  14. J. Léorat, Linear dynamo simulations with time dependent helical flows. Magnetohydrodynamics 31 (1995) 367-373. [Google Scholar]
  15. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). [Google Scholar]
  16. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1978). [Google Scholar]
  17. A.J. Meir and P.G. Schmidt, Analysis and numerical approximation of a stationary MHD flow problem with non-ideal boundary. SIAM J. Numer. Anal. 36 (1999) 1304-1332. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
  19. J.-C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet] [Google Scholar]
  20. R.L. Parker, Reconnexion of lines of force in rotating spheres and cylinders. Proc. Roy. Soc. 291 (1966) 60-72. [CrossRef] [Google Scholar]
  21. N. Ben Salah, A. Soulaimani and W.G. Habashi, A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5867-5892. [CrossRef] [MathSciNet] [Google Scholar]
  22. N. Ben Salah, A. Soulaimani, W.G. Habashi and M. Fortin, A conservative stabilized finite element method for magnetohydrodynamics equations. Internat. J. Numer. Methods Fluids 29 (1999) 535-554. [CrossRef] [Google Scholar]
  23. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO Anal. Numér. 18 (1984) 175-182. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you