Free Access
Issue
ESAIM: M2AN
Volume 36, Number 4, July/August 2002
Page(s) 537 - 572
DOI https://doi.org/10.1051/m2an:2002025
Published online 15 September 2002
  1. I. Babuska and A.K. Aziz, Survey lectures on the mathematical foundation of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1973) 5-359. [Google Scholar]
  2. A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). [Google Scholar]
  3. D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Springer-Verlag, New York (1999). [Google Scholar]
  4. T.Y. Hou and X.H. Wu, A Multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. [CrossRef] [MathSciNet] [Google Scholar]
  5. T.Y. Hou, X.H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913-943. [Google Scholar]
  6. A.-M. Matache, Spectral- and p-Finite Elements for problems with microstructure, Ph.D. thesis, ETH Zürich (2000). [Google Scholar]
  7. A.-M. Matache, I. Babuska and C. Schwab, Generalized p-FEM in Homogenization. Numer. Math. 86 (2000) 319-375. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.-M. Matache and M.J. Melenk, Two-scale regularity for homogenization problems with non-smooth fine-scale geometries, submitted. [Google Scholar]
  9. A.-M. Matache and C. Schwab, Finite dimensional approximations for elliptic problems with rapidly oscillating coefficients, in Multiscale Problems in Science and Technology, N. Antonic, C.J. van Duijn, W. Jäger and A. Mikelic Eds., Springer-Verlag (2002) 203-242. [Google Scholar]
  10. R.C. Morgan and I. Babuska, An approach for constructing families of homogenized solutions for periodic media, I: An integral representation and its consequences, II: Properties of the kernel. SIAM J. Math. Anal. 22 (1991) 1-33. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Schwab, p- and hp- Finite Element Methods. Oxford Science Publications (1998). [Google Scholar]
  12. C. Schwab and A.-M. Matache, High order generalized FEM for lattice materials, in Proc. of the 3rd European Conference on Numerical Mathematics and Advanced Applications, Finland, 1999, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific, Singapore (2000). [Google Scholar]
  13. B. Szab ó and I. Babuska, Finite Element Analysis. John Wiley & Sons, Inc. (1991). [Google Scholar]
  14. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization. North-Holland (1992). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you