Free Access
Issue
ESAIM: M2AN
Volume 36, Number 4, July/August 2002
Page(s) 573 - 595
DOI https://doi.org/10.1051/m2an:2002026
Published online 15 September 2002
  1. V. Alexiades and A.D. Solomon, Mathematical modeling of melting and freezing processes. Hemisphere Publishing Corporation, Washington (1993). [Google Scholar]
  2. H. Amann, Ordinary differential equations. An introduction to nonlinear analysis, Vol. 13 of De Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (1990). [Google Scholar]
  3. E. Bänsch and A. Schmidt, A finite element method for dendritic growth, in Computational crystal growers workshop, J.E. Taylor Ed., AMS Selected Lectures in Mathematics (1992) 16-20. [Google Scholar]
  4. X. Chen, J. Hong and F. Yi, Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem. Comm. Partial Differential Equations 21 (1996) 1705-1727. [MathSciNet] [Google Scholar]
  5. K. Deckelnick and G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72 (1995) 197-222. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations 2 (1997) 619-642. [MathSciNet] [Google Scholar]
  7. J. Escher and G. Simonett, Classical solutions for the quasi-stationary Stefan problem with surface tension, in Papers associated with the international conference on partial differential equations, Potsdam, Germany, June 29-July 2, 1996, M. Demuth et al. Eds., Vol. 100. Akademie Verlag, Math. Res., Berlin (1997) 98-104. [Google Scholar]
  8. L.C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Ratin, Stud. Adv. Math., 33431, Florida (1992). [Google Scholar]
  9. M. Fried, A level set based finite element algorithm for the simulation of dendritic growth. Submitted to Computing and Visualization in Science, Springer. [Google Scholar]
  10. M.E. Gurtin, Thermomechanics of evolving phase boundaries in the plane. Clarendon Press, Oxford (1993). [Google Scholar]
  11. J.S. Langer, Instabilities and pattern formation in crystal growth. Rev. Modern Phys. 52 (1980) 1-28. [CrossRef] [Google Scholar]
  12. W.W. Mullins and R.F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35 (1964) 444-451. [CrossRef] [Google Scholar]
  13. L. Perko, Differential equations and dynamical systems. 2nd ed, Vol. 7 of Texts in Applied Mathematics. Springer, New York (1996). [Google Scholar]
  14. A. Schmidt, Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125 (1996) 293-312. [CrossRef] [Google Scholar]
  15. R.F. Sekerka, Morphological instabilities during phase transformations, in Phase transformations and material instabilities in solids, Proc. Conf., Madison/Wis. 1983. Madison 52, M. Gurtin Ed., Publ. Math. Res. Cent. Univ. Wis. (1984) 147-162. [Google Scholar]
  16. J. Strain, Velocity effects in unstable solidification. SIAM J. Appl. Math. 50 (1990) 1-15. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Strang and G.J. Fix, An analysis of the finite element method. Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J (1973). [Google Scholar]
  18. A. Veeser, Error estimates for semi-discrete dendritic growth. Interfaces Free Bound. 1 (1999) 227-255. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Visintin, Models of phase transitions, Vol. 28 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1996). [Google Scholar]
  20. W.P. Ziemer, Weakly Differentiable Functions, Vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you