Free Access
Issue
ESAIM: M2AN
Volume 36, Number 4, July/August 2002
Page(s) 597 - 630
DOI https://doi.org/10.1051/m2an:2002027
Published online 15 September 2002
  1. I. Babuska and L. Li, Hierarchic modelling of plates. Comput. & Structures 40 (1991) 419-430. [CrossRef] [Google Scholar]
  2. I. Babuska and L. Li, The problem of plate modelling - theoretical and computational results. Comput. Methods Appl. Mech. Engrg. 100 (1992) 249-273. [CrossRef] [Google Scholar]
  3. P. Bolley, J. Camus and M. Dauge, Régularité Gevrey pour le problème de Dirichlet dans des domaines à singularités coniques. Comm. Partial Differential Equations 10 (1985) 391-432. [CrossRef] [MathSciNet] [Google Scholar]
  4. P.G. Ciarlet, Mathematical Elasticity II: Theory of Plates. Elsevier Publ., Amsterdam (1997). [Google Scholar]
  5. M. Dauge, I. Djurdjevic, E. Faou and A. Rössle, Eigenmodes asymptotic in thin elastic plates. J. Math. Pures Appl. 78 (1999) 925-964. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167-197. [Google Scholar]
  7. M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. II: Analysis of the boundary layer terms. Asymptot. Anal. 16 (1998) 99-124. [MathSciNet] [Google Scholar]
  8. M. Dauge and I. Gruais, Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Engrg. 157 (1998) 335-347. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Dauge, I. Gruais and A. Rössle, The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999/00) 305-345 (electronic). [Google Scholar]
  10. E. Faou, Développements asymptotiques dans les coques linéairement élastiques. Thèse, Université de Rennes 1 (2000). [Google Scholar]
  11. E. Faou, Élasticité linéarisée tridimensionnelle pour une coque mince : résolution en série formelle en puissances de l'épaisseur. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 415-420. [Google Scholar]
  12. R.D. Gregory and F.Y. Wan, Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity 14 (1984) 27-64. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Guo and I. Babuska, Regularity of the solutions for elliptic problems on nonsmooth domains in R3. I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 77-126. [MathSciNet] [Google Scholar]
  14. B. Guo and I. Babuska, Regularity of the solutions for elliptic problems on nonsmooth domains in R3. II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997). [Google Scholar]
  15. V.A. Kondrat'ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313. [Google Scholar]
  16. J.M. Melenk and C. Schwab, HP FEM for reaction-diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal. 35 (1998) 1520-1557 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  17. C.B. Morrey and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math. 10 (1957) 271-290. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Schwab, Boundary layer resolution in hierarchical models of laminated composites. RAIRO Modél. Math. Anal. Numér. 28 (1994) 517-537. [MathSciNet] [Google Scholar]
  19. C. Schwab,p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York (1998). [Google Scholar]
  20. C. Schwab and S. Wright, Boundary layer approximation in hierarchical beam and plate models. J. Elasticity 38 (1995) 1-40. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Stein and S. Ohnimus, Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Engrg. 150 (1997) 327-350. Symposium on Advances in Computational Mechanics, Vol. 2 (Austin, TX, 1997). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you