Free Access
Issue
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
Page(s) 1091 - 1109
DOI https://doi.org/10.1051/m2an:2003007
Published online 15 January 2003
  1. R. Coifman, P.L. Lions, Y. Meyer and S. Semmes, Compensated-compactness and Hardy spaces. J. Math. Pures Appl. 72 (1993) 247-286. [Google Scholar]
  2. R.J. DiPerna and P.L. Lions, On the cauchy problem for boltzman equations: global existence and weak stability. C.R. Acad. Sci. Paris Sér. I Math. 306 (1988) 343-346. [Google Scholar]
  3. R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98 (1989) 511-547. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Girault and P.A. Raviart, Finite Elements Methods of the Navier-Stokes Equations. Springer-Verlag (1986). [Google Scholar]
  5. P.L. Lions, Mathematical Topics in Fluid Mechanics, Incompressible models. Vol. 1, Oxford Science Publications (1996). [Google Scholar]
  6. P.L. Lions, Mathematical Topics in Fluid Mechanics, Compressible models. Vol. 2, Oxford Science Publications (1998). [Google Scholar]
  7. B. Di Martino, F.J. Chatelon and P. Orenga, The nonlinear Galerkin's method applied to the shallow water equations. Math. Models Methods Appl. Sci. 9 (1999) 825-854. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Orenga, Analyse de quelques problèmes d'océanographie physique. Ph.D. thesis, Université de Corse, Corte (1992). [Google Scholar]
  9. P. Orenga, Construction d'une base spéciale pour la résolution de quelques problèmes non linéaires d'océanographie physique en dimension deux, in Nonlinear partial differential equations and their applications, D. Cioranescu and J.L. Lions, Vol. 13. Longman, Pitman Res. Notes Math. Ser. 391 (1998) 234-258. [Google Scholar]
  10. V.A. Solonnikov, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976) 128-142. English translation in J. Soviet Math. 14 (1980) 1120-1133. [Google Scholar]
  11. V.A. Weigant, An exemple of non-existence globally in time of a solution of the Navier-Stokes equations for a compressible viscous barotropic fluid. Russian Acad. Sci. Doklady Mathematics 50 (1995) 397-399. [Google Scholar]
  12. E. Zeidler, Fixed-point theorems, in Nonlinear Functional Analysis and its Applications, Vol. 1, Springer-Verlag (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you