Free Access
Volume 36, Number 6, November/December 2002
Page(s) 1013 - 1026
Published online 15 January 2003
  1. E.C. Bingham, Fluidity and plasticity. Mc Graw-Hill, New-York (1922). [Google Scholar]
  2. O. Cazacu and N. Cristescu, Constitutive model and analysis of creep flow of natural slopes. Ital. Geotech. J. 34 (2000) 44-54. [Google Scholar]
  3. N. Cristescu, Plastical flow through conical converging dies, using viscoplastic constitutive equations. Int. J. Mech. Sci. 17 (1975) 425-433. [CrossRef] [Google Scholar]
  4. N. Cristescu, On the optimal die angle in fast wire drawing. J. Mech. Work. Technol. 3 (1980) 275-287. [CrossRef] [Google Scholar]
  5. N. Cristescu, A model of stability of slopes in Slope Stability 2000. Proceedings of Sessions of Geo-Denver 2000, D.V. Griffiths, G.A. Fenton and T.R. Martin (Eds.). Geotechnical special publication 101 (2000) 86-98. [Google Scholar]
  6. N. Cristescu, O. Cazacu and C. Cristescu, A model for slow motion of natural slopes. Can. Geotech. J. (to appear). [Google Scholar]
  7. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, Sobolev spaces and transport theory. Invent. Math. 98 (1989) 511-547. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). [Google Scholar]
  9. R. Glowinski, Lectures on numerical methods for nonlinear variational problems. Notes by M.G. Vijayasundaram and M. Adimurthi. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 65. Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York (1980). [Google Scholar]
  10. R. Glowinski, J.-L. Lions and R. Trémolières, Analyse numérique des inéquations variationnelles. Tome 1 : Théorie générale et premières applications. Tome 2 : Applications aux phénomènes stationnaires et d'évolution. Méthodes Mathématiques de l'Informatique, 5. Dunod, Paris (1976). [Google Scholar]
  11. I. Ionescu and M. Sofonea, The blocking property in the study of the Bingham fluid. Int. J. Engng. Sci. 24 (1986) 289-297. [CrossRef] [Google Scholar]
  12. I. Ionescu and M. Sofonea, Functional and numerical methods in viscoplasticity. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993). [Google Scholar]
  13. I. Ionescu and B. Vernescu, A numerical method for a viscoplastic problem. An application to the wire drawing. Internat. J. Engrg. Sci. 26 (1988) 627-633. [Google Scholar]
  14. J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure. Appl. Math. XX (1967) 493-519. [Google Scholar]
  15. P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol 1: Incompressible models. Oxford University Press (1996). [Google Scholar]
  16. P.P. Mosolov and V.P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM, J. Mech. and Appl. Math. 29 (1965) 545-577. [Google Scholar]
  17. P.P. Mosolov and V.P. Miasnikov, On stagnant flow regions of a viscous-plastic medium in pipes. PPM, J. Mech. and Appl. Math. 30 (1966) 841-854. [Google Scholar]
  18. P.P. Mosolov and V.P. Miasnikov, On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM, J. Mech and Appl. Math. 31 (1967) 609-613. [Google Scholar]
  19. A. Nouri and F. Poupaud, An existence theorem for the multifluid Navier-Stokes problem. J. Differential Equations 122 (1995) 71-88. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.G. Oldroyd, A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Camb. Philos. Soc. 43 (1947) 100-105. [CrossRef] [Google Scholar]
  21. P. Suquet, Un espace fonctionnel pour les équations de la plasticité. Ann. Fac. Sci. Toulouse Math. (6) 1 (1979) 77-87. [Google Scholar]
  22. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam (1979). [Google Scholar]
  23. R. Temam, Problèmes mathématiques en plasticité. Gauthiers-Villars, Paris (1983). [Google Scholar]
  24. R. Temam and G. Strang, Functions of bounded deformation. Arch. Rational Mech. Anal. 75 (1980) 7-21. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you