Free Access
Volume 37, Number 1, January/February 2003
Page(s) 133 - 142
Published online 15 March 2003
  1. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179-192. [Google Scholar]
  2. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989-1991) 13-51. Longman Sci. Tech., Harlow (1994). [Google Scholar]
  3. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47 (1986) 103-134. [Google Scholar]
  4. J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp. 55 (1990) 1-22. [CrossRef] [MathSciNet] [Google Scholar]
  5. Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys. 125 (1996) 279-292. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51-64. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and M.F. Wheeler Eds., Wiley (1997) 270-279. [Google Scholar]
  8. R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. [Google Scholar]
  9. G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and engineering VI, Versailles (1983) 3-14. North-Holland, Amsterdam (1984). [Google Scholar]
  10. A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997). [Google Scholar]
  11. F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157-172. Springer, Berlin (1998). [Google Scholar]
  12. Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187-211. [CrossRef] [MathSciNet] [Google Scholar]
  13. Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math. 6 (1998) 299-308. [MathSciNet] [Google Scholar]
  14. R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems. ESAIM: M2AN 34 (2000) 31-45. [CrossRef] [EDP Sciences] [Google Scholar]
  15. J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron. Trans. Numer. Anal. (to appear). [Google Scholar]
  16. G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms 29 (2002) 107-129. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73-130. [Google Scholar]
  18. D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352-1367. [CrossRef] [MathSciNet] [Google Scholar]
  19. C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput. 12 (1991) 1486-1495. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you