Free Access
Issue
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
Page(s) 133 - 142
DOI https://doi.org/10.1051/m2an:2003016
Published online 15 March 2003
  1. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179-192.
  2. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989-1991) 13-51. Longman Sci. Tech., Harlow (1994).
  3. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47 (1986) 103-134. [CrossRef] [MathSciNet]
  4. J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp. 55 (1990) 1-22. [CrossRef] [MathSciNet]
  5. Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys. 125 (1996) 279-292. [CrossRef] [MathSciNet]
  6. M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51-64. [CrossRef] [MathSciNet]
  7. R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and M.F. Wheeler Eds., Wiley (1997) 270-279.
  8. R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. [CrossRef] [MathSciNet]
  9. G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and engineering VI, Versailles (1983) 3-14. North-Holland, Amsterdam (1984).
  10. A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997).
  11. F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157-172. Springer, Berlin (1998).
  12. Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187-211. [CrossRef] [MathSciNet]
  13. Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math. 6 (1998) 299-308. [MathSciNet]
  14. R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems. ESAIM: M2AN 34 (2000) 31-45. [CrossRef] [EDP Sciences]
  15. J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron. Trans. Numer. Anal. (to appear).
  16. G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms 29 (2002) 107-129. [CrossRef] [MathSciNet]
  17. J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73-130.
  18. D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352-1367. [CrossRef] [MathSciNet]
  19. C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput. 12 (1991) 1486-1495. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you