Free Access
Volume 37, Number 1, January/February 2003
Page(s) 117 - 132
Published online 15 March 2003
  1. S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084-1095. [Google Scholar]
  2. H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). Théorie et applications [Theory and applications]. [Google Scholar]
  3. Xinfu Chen, Generationand propagation of interfaces for reaction-diffusion equations. J. Differential Equations 96 (1992) 116-141. [Google Scholar]
  4. E.A. Coddington and N. Levinson, Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955). [Google Scholar]
  5. Ha Dang, P.C. Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43 (1992) 984-998. [CrossRef] [MathSciNet] [Google Scholar]
  6. F.R. de Hoog and R. Weiss, An approximation theory for boundary value problems on infinite intervals. Computing 24 (1980) 227-239. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. de Mottoni and M. Schatzman, Development of interfaces in Formula . Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 207-220. [MathSciNet] [Google Scholar]
  8. P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. [CrossRef] [MathSciNet] [Google Scholar]
  10. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992) 1097-1123. [Google Scholar]
  11. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. [Google Scholar]
  12. T.M. Hagstrom and H.B. Keller, Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comp. 48 (1987) 449-470. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Hagstrom and H.B. Keller, Exact boundary conditions at an artificial boundary for partial differential equations in cylinders. SIAM J. Math. Anal. 17 (1986) 322-341. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differential Geom. 38 (1993) 417-461. [MathSciNet] [Google Scholar]
  15. A.D. Jepson and H.B. Keller, Steady state and periodic solution paths: their bifurcations and computations, in Numerical methods for bifurcation problems, Dortmund (1983). Birkhäuser, Basel (1984) 219-246. [Google Scholar]
  16. A. Jepson, Asymptotic boundary conditions for ordinary differential equations. Ph.D. thesis, California Institute of Technology (1980). [Google Scholar]
  17. P.A. Markowich, A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math. Anal. 13 (1982) 484-513. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1241-1275. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you