Free Access
Issue
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
Page(s) 91 - 115
DOI https://doi.org/10.1051/m2an:2003018
Published online 15 March 2003
  1. Y. Achdou, The mortar element method for convection diffusion problems. C.R. Acad. Sci. Paris Sér. I Math. 321 (1995) 117-123. [Google Scholar]
  2. Y. Achdou, C. Japhet, Y. Maday and F. Nataf, A new cement to glue non-conforming grids with Robin interface conditions: The finite volume case. Numer. Math. 92 (2002) 593-620. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal. 37 (2000) 1295-1315. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Arbogast and I. Yotov, A non-mortar mixed finite element method for elliptic problems on non-matching multiblock grids. Comput. Methods Appl. Mech. Engrg. 149 (1997) 255-265. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Babuska and M. Suri, The hp version of the finite element method with quasi-uniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. [MathSciNet] [Google Scholar]
  6. R. Becker and P. Hansbon, A finite element method for domain decomposition with non-matching grids. Technical Report N° 3613, INRIA, January 1999. [Google Scholar]
  7. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. [MathSciNet] [Google Scholar]
  8. F. Ben Belgacem and Y. Maday, Coupling spectral and finite element for second order elliptic three dimensional equations. SIAM J. Numer. Anal. 31 (1999) 1234-1263. [CrossRef] [Google Scholar]
  9. A. Ben Abdallah, F. Ben Belgacem, Y. Maday and F. Rapetti, Mortaring the two-dimensional Nédélec finite element for the discretization of the Maxwell equations. M2AS (submitted). [Google Scholar]
  10. F. Ben Belgacem, The mortar element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The mortar element method, in Collège de France Seminar, H. Brezis and J.-L. Lions Eds., Pitman (1994). [Google Scholar]
  12. K.S. Bey, A. Patra and J.T. Oden, hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy. Internat. J. Numer. Methods Engrg. 38 (1995) 3889-3908. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Brezzi and D. Marini, A three-field domain decomposition method, in Domain Decomposition Methods in Science and Engineering: The Sixth International Conference on Domain Decomposition, A. Quarteroni, Y.A. Kuznetsov, J. Périaux and O.B. Widlund Eds., AMS. Contemp. Math. 157 (1994) 27-34. Held in Como, Italy, June 15-19, 1992. [Google Scholar]
  14. F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble functions. Math. Comp. 70 (2001) 911-934. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Cockburn, G.E. Karniadakis and Chi-Wang Shu (Eds.), Discontinuous Galerkin Methods. Springer-Verlag, Lect. Notes Comput. Sci. Eng. 11 (2000). [Google Scholar]
  16. P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Houston and E. Süli, Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form. Computing 66 (2001) 99-119. Archives for scientific computing. Numerical methods for transport-dominated and related problems, Magdeburg (1999). [CrossRef] [MathSciNet] [Google Scholar]
  18. T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173-189. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987). [Google Scholar]
  20. C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1-26. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Le Tallec and T. Sassi, Domain decomposition with nonmatching grids: Augmented Lagrangian approach. Math. Comp. 64 (1995) 1367-1396. [MathSciNet] [Google Scholar]
  23. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer-Verlag, Berlin (1994). [Google Scholar]
  24. C. Schwab, p- and hp-finite element methods. Oxford Science Publications (1998). [Google Scholar]
  25. R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New trends and applications, S. Idelshon, E. Onate and E. Dvorkin Eds., Barcelona (1998). @CIMNE. [Google Scholar]
  26. M.F. Wheeler and I. Yotov, Physical and computational domain decompositions for modeling subsurface flows, in Tenth International Conference on Domain Decomposition Methods, J. Mandel, C. Farhat and X.-C. Cai Eds., AMS. Contemp. Math. 218 (1998) 217-228. [Google Scholar]
  27. B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. [CrossRef] [MathSciNet] [Google Scholar]
  28. I. Yotov, Mixed Finite Element Methods for Flow in Porous Media. Ph.D. thesis, TICAM, University of Texas at Austin (1996). [Google Scholar]
  29. I. Yotov, A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising in porous media flow. East-West J. Numer. Math. 5 (1997) 211-230. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you