Free Access
Volume 37, Number 1, January/February 2003
Page(s) 91 - 115
Published online 15 March 2003
  1. Y. Achdou, The mortar element method for convection diffusion problems. C.R. Acad. Sci. Paris Sér. I Math. 321 (1995) 117-123.
  2. Y. Achdou, C. Japhet, Y. Maday and F. Nataf, A new cement to glue non-conforming grids with Robin interface conditions: The finite volume case. Numer. Math. 92 (2002) 593-620. [CrossRef] [MathSciNet]
  3. T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal. 37 (2000) 1295-1315. [CrossRef] [MathSciNet]
  4. T. Arbogast and I. Yotov, A non-mortar mixed finite element method for elliptic problems on non-matching multiblock grids. Comput. Methods Appl. Mech. Engrg. 149 (1997) 255-265. [CrossRef] [MathSciNet]
  5. I. Babuska and M. Suri, The hp version of the finite element method with quasi-uniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. [MathSciNet]
  6. R. Becker and P. Hansbon, A finite element method for domain decomposition with non-matching grids. Technical Report N° 3613, INRIA, January 1999.
  7. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. [MathSciNet]
  8. F. Ben Belgacem and Y. Maday, Coupling spectral and finite element for second order elliptic three dimensional equations. SIAM J. Numer. Anal. 31 (1999) 1234-1263. [CrossRef]
  9. A. Ben Abdallah, F. Ben Belgacem, Y. Maday and F. Rapetti, Mortaring the two-dimensional Nédélec finite element for the discretization of the Maxwell equations. M2AS (submitted).
  10. F. Ben Belgacem, The mortar element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. [CrossRef] [MathSciNet]
  11. C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The mortar element method, in Collège de France Seminar, H. Brezis and J.-L. Lions Eds., Pitman (1994).
  12. K.S. Bey, A. Patra and J.T. Oden, hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy. Internat. J. Numer. Methods Engrg. 38 (1995) 3889-3908. [CrossRef] [MathSciNet]
  13. F. Brezzi and D. Marini, A three-field domain decomposition method, in Domain Decomposition Methods in Science and Engineering: The Sixth International Conference on Domain Decomposition, A. Quarteroni, Y.A. Kuznetsov, J. Périaux and O.B. Widlund Eds., AMS. Contemp. Math. 157 (1994) 27-34. Held in Como, Italy, June 15-19, 1992.
  14. F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble functions. Math. Comp. 70 (2001) 911-934. [CrossRef] [MathSciNet]
  15. B. Cockburn, G.E. Karniadakis and Chi-Wang Shu (Eds.), Discontinuous Galerkin Methods. Springer-Verlag, Lect. Notes Comput. Sci. Eng. 11 (2000).
  16. P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. [CrossRef] [MathSciNet]
  17. P. Houston and E. Süli, Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form. Computing 66 (2001) 99-119. Archives for scientific computing. Numerical methods for transport-dominated and related problems, Magdeburg (1999). [CrossRef] [MathSciNet]
  18. T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173-189. [CrossRef] [MathSciNet]
  19. C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987).
  20. C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. [CrossRef] [MathSciNet]
  21. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1-26. [CrossRef] [MathSciNet]
  22. P. Le Tallec and T. Sassi, Domain decomposition with nonmatching grids: Augmented Lagrangian approach. Math. Comp. 64 (1995) 1367-1396. [MathSciNet]
  23. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer-Verlag, Berlin (1994).
  24. C. Schwab, p- and hp-finite element methods. Oxford Science Publications (1998).
  25. R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New trends and applications, S. Idelshon, E. Onate and E. Dvorkin Eds., Barcelona (1998). @CIMNE.
  26. M.F. Wheeler and I. Yotov, Physical and computational domain decompositions for modeling subsurface flows, in Tenth International Conference on Domain Decomposition Methods, J. Mandel, C. Farhat and X.-C. Cai Eds., AMS. Contemp. Math. 218 (1998) 217-228.
  27. B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. [CrossRef] [MathSciNet]
  28. I. Yotov, Mixed Finite Element Methods for Flow in Porous Media. Ph.D. thesis, TICAM, University of Texas at Austin (1996).
  29. I. Yotov, A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising in porous media flow. East-West J. Numer. Math. 5 (1997) 211-230. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you