Free Access
Volume 37, Number 1, January/February 2003
Page(s) 1 - 39
Published online 15 March 2003
  1. S. Benzoni-Gavage, Stability of semi-discrete shock profiles by means of an Evans function in infinite dimensions. J. Dynam. Differential Equations 14 (2002) 613-674. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Benzoni-Gavage, D. Serre and K. Zumbrun, Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32 (2001) 929-962. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bultelle, M. Grassin and D. Serre, Unstable Godunov discrete profiles for steady shock waves. SIAM J. Numer. Anal. 35 (1998) 2272-2297. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Chainais-Hillairet and E. Grenier, Numerical boundary layers for hyperbolic systems in 1-D. ESAIM: M2AN 35 (2001) 91-106. [CrossRef] [EDP Sciences] [Google Scholar]
  5. C. Dafermos, Hyperbolic conservation laws in continuum physics. Springer (2000). [Google Scholar]
  6. R. A. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998) 797-855. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Gisclon and D. Serre, Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C.R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377-382. [Google Scholar]
  8. M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31 (1997) 359-380. [Google Scholar]
  9. P. Godillon, Necessary condition of spectral stability for a stationary Lax-Wendroff shock profile. Preprint UMPA, ENS Lyon, 295 (2001). [Google Scholar]
  10. P. Godillon, Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. Phys. D 148 (2001) 289-316. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Grenier and O. Guès, Boundary layers for viscous perturbations of non-characteristic quasilinear hyperbolic problems. J. Differential Equations (1998). [Google Scholar]
  12. E. Grenier and F. Rousset, Stability of one-dimensional boundary layers by using Green's functions. Comm. Pure Appl. Math. 54 (2001) 1343-1385. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Jennings, Discrete shocks. Comm. Pure Appl. Math. 27 (1974) 25-37. [CrossRef] [MathSciNet] [Google Scholar]
  14. C.K.R.T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc. 286 (1984) 431-469. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Kato, Perturbation theory for linear operators. Springer-Verlag (1985). [Google Scholar]
  16. T.-P. Liu, On the viscosity criterion for hyperbolic conservation laws, in Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), pp. 105-114. SIAM, Philadelphia, PA (1991). [Google Scholar]
  17. T.-P. Liu and Z. Xin, Overcompressive shock waves, in Nonlinear evolution equations that change type. Springer-Verlag, New York, IMA Vol. Math. Appl. 27 (1990) 139-145. [Google Scholar]
  18. T.-P. Liu and S.-H. Yu, Continuum shock profiles for discrete conservation laws. I. Construction. Comm. Pure Appl. Math. 52 (1999) 85-127. [CrossRef] [MathSciNet] [Google Scholar]
  19. T.-P. Liu and S.-H. Yu, Continuum shock profiles for discrete conservation laws. II. Stability. Comm. Pure Appl. Math. 52 (1999) 1047-1073. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Majda and J. Ralston, Discrete shock profiles for systems of conservation laws. Comm. Pure Appl. Math. 32 (1979) 445-482. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Mascia and K. Zumbrun, Pointwise green's function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51 (2002) 773-904. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Michelson, Discrete shocks for difference approximations to systems of conservation laws. Adv. in Appl. Math. 5 (1984) 433-469. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Schecter and M. Shearer, Transversality for undercompressive shocks in Riemann problems, in Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), pp. 142-154. SIAM, Philadelphia, PA (1991). [Google Scholar]
  24. D. Serre, Remarks about the discrete profiles of shock waves. Mat. Contemp. 11 (1996) 153-170. Fourth Workshop on Partial Differential Equations, Part II (Rio de Janeiro, 1995). [MathSciNet] [Google Scholar]
  25. D. Serre, Discrete shock profiles and their stability, in Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998), pp. 843-853. Birkhäuser, Basel (1999). [Google Scholar]
  26. D. Serre, Systems of conservation laws. 1. Cambridge University Press, Cambridge (1999). Hyperbolicity, entropies, shock waves. Translated from the 1996 French original by I.N. Sneddon. [Google Scholar]
  27. K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998) 741-871. [CrossRef] [MathSciNet] [Google Scholar]
  28. K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48 (1999) 937-992. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you