Free Access
Volume 37, Number 1, January/February 2003
Page(s) 41 - 62
Published online 15 March 2003
  1. D.P. Bertsekas, Constrained Optimization and Lagrange Mulitpliers. Academic Press, New York (1982). [Google Scholar]
  2. M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, A comparison of a Moreau-Yosida based active strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495-521. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. [CrossRef] [MathSciNet] [Google Scholar]
  4. Z. Dostal, Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7 (1997) 871-887. [Google Scholar]
  5. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). [Google Scholar]
  6. R. Glowinski, J.L. Lions and T. Tremolieres, Analyse Numerique des Inequations Variationnelles. Vol. 1, Dunod, Paris (1976). [Google Scholar]
  7. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as semi-smooth Newton method. SIAM J. Optim. (to appear). [Google Scholar]
  8. R. Hoppe, Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24 (1987) 1046-1065. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Hoppe and R. Kornhuber, Adaptive multigrid methods for obstacle problems. SIAM J. Numer. Anal. 31 (1994) 301-323. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41 (2000) 573-589. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343-364. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980). [Google Scholar]
  13. D.M. Troianello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). [Google Scholar]
  14. M. Ulbrich, Semi-smooth Newton methods for operator equations in function space. SIAM J. Optim. (to appear). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you