Free Access
Issue
ESAIM: M2AN
Volume 37, Number 2, March/April 2003
Page(s) 277 - 289
DOI https://doi.org/10.1051/m2an:2003026
Published online 15 November 2003
  1. R.A. Adams, Sobolev Spaces. First edition, Academic Press, New York (1975). [Google Scholar]
  2. M.G. Ancona, Diffusion-drift modelling of strong inversion layers. COMPEL 6 (1987) 11-18. [Google Scholar]
  3. J. Barrett, J. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525-556. [CrossRef] [MathSciNet] [Google Scholar]
  4. N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model. Z. Angew. Math. Phys. 49 (1998) 251-275. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differential Equations 83 (1990) 179-206. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.L. Bertozzi, The mathematics of moving contact lines in thin liquid films. Notices Amer. Math. Soc. 45 (1998) 689-697. [MathSciNet] [Google Scholar]
  7. A.L. Bertozzi and M.C. Pugh, Long-wave instabilities and saturation in thin film equations. Comm. Pure Appl. Math. 51 (1998) 625-661. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.L. Bertozzi and L. Zhornitskaya, Positivity preserving numerical schemes for lubriaction-typeequations. SIAM J. Numer. Anal. 37 (2000) 523-555. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.M. Bleher, J.L. Lebowitz and E.R. Speer, Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Comm. Pure Appl. Math. 47 (1994) 923-942. [CrossRef] [MathSciNet] [Google Scholar]
  10. W.M. Coughran and J.W. Jerome, Modular alorithms for transient semiconductor device simulation, part I: Analysis of the outer iteration, in Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulations, R.E. Bank Ed. (1990) 107-149. [Google Scholar]
  11. R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and quantitative behavior of solutions. SIAM J. Math. Anal. 29 (1998) 321-342. [CrossRef] [MathSciNet] [Google Scholar]
  12. C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409-427. [CrossRef] [MathSciNet] [Google Scholar]
  13. C.L. Gardner and Ch. Ringhofer, Approximation of thermal equilibrium for quantum gases with discontinuous potentials and applications to semiconductor devices. SIAM J. Appl. Math. 58 (1998) 780-805. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Gasser and A. Jüngel, The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys. 48 (1997) 45-59. [CrossRef] [MathSciNet] [Google Scholar]
  15. I. Gasser and P.A. Markowich, Quantum hydrodynamics, Wigner transform and the classical limit. Asymptot. Anal. 14 (1997) 97-116. [MathSciNet] [Google Scholar]
  16. G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.T. Gyi and A. Jüngel, A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations 5 (2000) 773-800. [MathSciNet] [Google Scholar]
  18. A. Jüngel, Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, PNLDE 41 (2001). [Google Scholar]
  19. A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth order parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000) 760-777. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Jüngel and R. Pinnau, A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system. SIAM J. Numer. Anal. 39 (2001) 385-406. [CrossRef] [MathSciNet] [Google Scholar]
  21. P.A. Markowich, Ch. A. Ringhofer and Ch. Schmeiser, Semiconductor Equations. First edition, Springer-Verlag, Wien (1990). [Google Scholar]
  22. F. Pacard and A. Unterreiter, A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations 20 (1995) 885-900. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Pietra and C. Pohl, Weak limits of the quantum hydrodynamic model. To appear in Proc. International Workshop on Quantum Kinetic Theory. [Google Scholar]
  24. R. Pinnau, A note on boundary conditions for quantum hydrodynamic models. Appl. Math. Lett. 12 (1999) 77-82. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Pinnau, The linearized transient quantum drift diffusion model - stability of stationary states. ZAMM 80 (2000) 327-344. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Pinnau, Numerical study of the Quantum Euler-Poisson model. To appear in Appl. Math. Lett. [Google Scholar]
  27. R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift diffusion model. SIAM J. Numer. Anal. 37 (1999) 211-245. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-96. [Google Scholar]
  29. G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. First edition, Plenum Press, New York (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you