Free Access
Volume 37, Number 2, March/April 2003
Page(s) 277 - 289
Published online 15 November 2003
  1. R.A. Adams, Sobolev Spaces. First edition, Academic Press, New York (1975).
  2. M.G. Ancona, Diffusion-drift modelling of strong inversion layers. COMPEL 6 (1987) 11-18.
  3. J. Barrett, J. Blowey and H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525-556. [CrossRef] [MathSciNet]
  4. N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model. Z. Angew. Math. Phys. 49 (1998) 251-275. [CrossRef] [MathSciNet]
  5. F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations. J. Differential Equations 83 (1990) 179-206. [CrossRef] [MathSciNet]
  6. A.L. Bertozzi, The mathematics of moving contact lines in thin liquid films. Notices Amer. Math. Soc. 45 (1998) 689-697. [MathSciNet]
  7. A.L. Bertozzi and M.C. Pugh, Long-wave instabilities and saturation in thin film equations. Comm. Pure Appl. Math. 51 (1998) 625-661. [CrossRef] [MathSciNet]
  8. A.L. Bertozzi and L. Zhornitskaya, Positivity preserving numerical schemes for lubriaction-typeequations. SIAM J. Numer. Anal. 37 (2000) 523-555. [CrossRef] [MathSciNet]
  9. P.M. Bleher, J.L. Lebowitz and E.R. Speer, Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Comm. Pure Appl. Math. 47 (1994) 923-942. [CrossRef] [MathSciNet]
  10. W.M. Coughran and J.W. Jerome, Modular alorithms for transient semiconductor device simulation, part I: Analysis of the outer iteration, in Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulations, R.E. Bank Ed. (1990) 107-149.
  11. R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and quantitative behavior of solutions. SIAM J. Math. Anal. 29 (1998) 321-342. [CrossRef] [MathSciNet]
  12. C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409-427. [CrossRef] [MathSciNet]
  13. C.L. Gardner and Ch. Ringhofer, Approximation of thermal equilibrium for quantum gases with discontinuous potentials and applications to semiconductor devices. SIAM J. Appl. Math. 58 (1998) 780-805. [CrossRef] [MathSciNet]
  14. I. Gasser and A. Jüngel, The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys. 48 (1997) 45-59. [CrossRef] [MathSciNet]
  15. I. Gasser and P.A. Markowich, Quantum hydrodynamics, Wigner transform and the classical limit. Asymptot. Anal. 14 (1997) 97-116. [MathSciNet]
  16. G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. [CrossRef] [MathSciNet]
  17. M.T. Gyi and A. Jüngel, A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations 5 (2000) 773-800. [MathSciNet]
  18. A. Jüngel, Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, PNLDE 41 (2001).
  19. A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth order parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000) 760-777. [CrossRef] [MathSciNet]
  20. A. Jüngel and R. Pinnau, A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system. SIAM J. Numer. Anal. 39 (2001) 385-406. [CrossRef] [MathSciNet]
  21. P.A. Markowich, Ch. A. Ringhofer and Ch. Schmeiser, Semiconductor Equations. First edition, Springer-Verlag, Wien (1990).
  22. F. Pacard and A. Unterreiter, A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations 20 (1995) 885-900. [CrossRef] [MathSciNet]
  23. P. Pietra and C. Pohl, Weak limits of the quantum hydrodynamic model. To appear in Proc. International Workshop on Quantum Kinetic Theory.
  24. R. Pinnau, A note on boundary conditions for quantum hydrodynamic models. Appl. Math. Lett. 12 (1999) 77-82. [CrossRef] [MathSciNet]
  25. R. Pinnau, The linearized transient quantum drift diffusion model - stability of stationary states. ZAMM 80 (2000) 327-344. [CrossRef] [MathSciNet]
  26. R. Pinnau, Numerical study of the Quantum Euler-Poisson model. To appear in Appl. Math. Lett.
  27. R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift diffusion model. SIAM J. Numer. Anal. 37 (1999) 211-245. [CrossRef] [MathSciNet]
  28. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65-96.
  29. G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. First edition, Plenum Press, New York (1987).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you