Issue |
ESAIM: M2AN
Volume 34, Number 3, May/june 2000
|
|
---|---|---|
Page(s) | 707 - 722 | |
DOI | https://doi.org/10.1051/m2an:2000163 | |
Published online | 15 April 2002 |
Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini
1
Faculté des Sciences de Sfax & ENIT-L A1.
(slim.chaabane@fsm.rnu.tn)
2
ENIT-L A1,
BP 37 1002 Tunis-Belvédère, Tunisie.
(mohamed.jaoua@enit.rnu.tn)
Received:
29
June
1998
Revised:
14
January
2000
This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not on its Lagrangian derivative u1(θ).
Résumé
On s'intéresse dans ce travail à un problème inverse non linéaire d'identification d'une frontière inconnue γ par des mesures de surfaces, les conditions aux limites imposées sur cette frontière γ étant de type Signorini. Le problème est d'abord transformé en un problème d'optimisation de forme, par la définition d'une fonction de type Kohn-Vogelius, dont nous montrons que le seul minimum est la frontière recherchée, et que le gradient dans une direction donnée θ ne dépend que du seul état u0, et non de sa dérivée lagrangienne u1(θ).
Mathematics Subject Classification: 35R30 / 35S85 / 49Q10 / 49Q12 / 49M10 / 65K10
Key words: Geometrical inverse problems / identification / Signorini type boundary conditions / unknown boundary / domaine derivatives / Kohn-Vogelius function / optimal shape design.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.