Free Access
Issue
ESAIM: M2AN
Volume 37, Number 2, March/April 2003
Page(s) 357 - 372
DOI https://doi.org/10.1051/m2an:2003031
Published online 15 November 2003
  1. R.A. Adams, Sobolev Spaces. Academic Press, New-York, San Francisco, London (1975). [Google Scholar]
  2. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. [MathSciNet] [Google Scholar]
  4. M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211-236. [MathSciNet] [Google Scholar]
  5. F. Brezzi and M. Fortin, Mixed and Hybride Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). [Google Scholar]
  7. P. Clement, Approximation by finite element using local regularization. RAIRO Ser. Rouge 8 (1975) 77-84. [Google Scholar]
  8. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  9. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris (1968). [Google Scholar]
  10. Y. Maday, C. Bernardi and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and their applications, H. Brezis and J.L. Lions Eds., Vol. XI, Pitman (1994) 13-51. [Google Scholar]
  11. J. Nitsche, Über eine Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1970/1971) 9-15. [Google Scholar]
  12. D. Schotzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes ii. Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667-697. [MathSciNet] [Google Scholar]
  13. R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you