Free Access
Volume 37, Number 2, March/April 2003
Page(s) 345 - 355
Published online 15 November 2003
  1. R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327-355. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire. [Google Scholar]
  3. A.V. Bobylev, The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443-476. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Verlag, New York (1994). [Google Scholar]
  5. L. Desvillettes, Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1-22. [Google Scholar]
  6. L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173-1189. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179-259. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Dürr, S. Goldstein and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209-230. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973). [Google Scholar]
  10. I.M. Guelfand and N.Y. Vilenkin, Les distributions, Tome IV, Applications de l'analyse harmonique. Dunod, Paris (1967). [Google Scholar]
  11. L. Hörmander, The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983). [Google Scholar]
  12. R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189-203. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143-146. [CrossRef] [MathSciNet] [Google Scholar]
  14. O. Lanford, Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1-111. [Google Scholar]
  15. R.W. Preisendorfer, A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685-730. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you