Free Access
Volume 37, Number 3, May-June 2003
Page(s) 451 - 478
Published online 15 April 2004
  1. R. Abgrall, An extension of Roe's upwind scheme to algebraic equilibrium real gas models. Comput. and Fluids 19 (1991) 171–182. [CrossRef] [Google Scholar]
  2. R.A. Baurle and S.S. Girimaji, An assumed PDF Turbulence-Chemistery closure with temperature-composition correlations. 37th Aerospace Sciences Meeting (1999). [Google Scholar]
  3. C. Berthon and F. Coquel, Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form, Hyperbolic problems: theory, numerics, applications, vol. I, Zürich (1998) 47–54, Intern. Ser. Numer. Math. 129 Birkhäuser (1999). [Google Scholar]
  4. C. Berthon and F. Coquel, About shock layers for compressible turbulent flow models, work in preparation, preprint MAB 01-29 2001 ( [Google Scholar]
  5. C. Berthon and F. Coquel, Nonlinear projection methods for multi-entropies Navier–Stokes systems, Innovative methods for numerical solutions of partial differential equations, Arcachon (1998), World Sci. Publishing, River Edge (2002) 278–304. [Google Scholar]
  6. C. Berthon, F. Coquel and P. LeFloch, Entropy dissipation measure and kinetic relation associated with nonconservative hyperbolic systems (in preparation). [Google Scholar]
  7. J.F. Colombeau, A.Y. Leroux, A. Noussair and B. Perrot, Microscopic profiles of shock waves and ambiguities in multiplications of distributions. SIAM J. Numer. Anal. 26 (1989) 871–883. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory. SIAM J. Numer. Anal. 30 (1993) 675–700. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Coquel and C. Marmignon, A Roe-type linearization for the Euler equations for weakly ionized multi-component and multi-temperature gas. Proceedings of the AIAA 12th CFD Conference, San Diego, USA (1995). [Google Scholar]
  10. F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal. 35 (1998) 2223–2249. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of a non conservative product. J. Math. Pures Appl. 74 (1995) 483–548. [MathSciNet] [Google Scholar]
  12. A. Forestier, J.M. Herard and X. Louis, A Godunov type solver to compute turbulent compressible flows. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 919–926. [Google Scholar]
  13. E. Godlewski and P.A. Raviart, Hyperbolic systems of conservations laws. Springer, Appl. Math. Sci. 118 (1996). [Google Scholar]
  14. A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [CrossRef] [MathSciNet] [Google Scholar]
  15. T.Y. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comp. 62 (1994) 497–530. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Laborde, Modélisation et étude numérique de flamme de diffusion supersonique et subsonique en régime turbulent. Ph.D. thesis, Université Bordeaux I, France (1999). [Google Scholar]
  17. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 59–84. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Larrouturou and C. Olivier, On the numerical appproximation of the K-eps turbulence model for two dimensional compressible flows. INRIA report, No. 1526 (1991). [Google Scholar]
  19. P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under non conservation form. Comm. Partial Differential Equations 13 (1988) 669–727. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Mohammadi and O. Pironneau, Analysis of the K-Epsilon Turbulence Model. Masson Eds., Rech. Math. Appl. (1994). [Google Scholar]
  21. P.A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic system modelling spray dynamics. Part 1. Solution of the Riemann problem. Math. Models Methods Appl. Sci. 5 (1995) 297–333. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Sainsaulieu, Travelling waves solutions of convection-diffusion systems whose convection terms are weakly nonconservative. SIAM J. Appl. Math. 55 (1995) 1552–1576. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Tadmor, A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2 (1986) 211–219. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you