Free Access
Volume 37, Number 3, May-June 2003
Page(s) 433 - 450
Published online 15 April 2004
  1. Z. Agur, L. Cojocaru, R. Anderson and Y. Danon, Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90 (1993) 11698–11702. [CrossRef] [Google Scholar]
  2. W.G. Aiello and H.I. Freedman, A time delay model of single-species growth with stage structure. Math. Biosci. 101 (1990) 139–153. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. W.G. Aiello, H.I. Freedman and J. Wu, Analysis of a model representing stage structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52 (1990) 855–869. [Google Scholar]
  4. D.D. Bainov and P.S. Simeonov, System with impulsive effect: stability, theory and applications. John Wiley & Sons, New York (1989). [Google Scholar]
  5. J.R. Bence and R.M. Nisbet, Space limited recruitment in open systems: The importance of time delays. Ecology 70 (1989) 1434–1441. [CrossRef] [Google Scholar]
  6. O. Bernard and J.L. Gouzé, Transient behavior of biological loop models, with application to the droop model. Math. Biosci. 127 (1995) 19–43. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. O. Bernard and S. Souissi, Qualitative behavior of stage-structure populations: application to structure validation. J. Math. Biol. 37 (1998) 291–308. [CrossRef] [MathSciNet] [Google Scholar]
  8. L.W. Botsford, Further analysis of Clark's delayed recruitment model. Bull. Math. Biol. 54 (1992) 275–293. [Google Scholar]
  9. J.M. Cushing, Equilibria and oscillations in age-structured population growth models, in Mathematical modelling of environmental and ecological system, J.B. Shukla, T.G. Hallam and V. Capasso Eds., Elsevier, New York (1987) 153–175. [Google Scholar]
  10. J.M. Cushing, An introduction to structured population dynamics. CBMS-NSF Regional Conf. Ser. in Appl. Math. 71 (1998) 1–10. [Google Scholar]
  11. I.R. Epstein, Oscillations and chaos in chemical systems. Phys. D 7 (1983) 47–56. [CrossRef] [Google Scholar]
  12. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer Verlag, Berlin, Heidelberg, New York, Tokyo (1990). [Google Scholar]
  13. J. Guckenheimer, G. Oster and A. Ipaktchi, The dynamics of density dependent population models. J. Math. Biol. 4 (1977) 101–147. [MathSciNet] [Google Scholar]
  14. W.S.C. Gurney, R.M. Nisbet and J.L. Lawton, The systematic formulation of tractable single-species population models incorporating age-structure. J. Anim. Ecol. 52 (1983) 479–495. [CrossRef] [Google Scholar]
  15. W.S.C. Gurney, R.M. Nisbet and S.P. Blythe, The systematic formulation of model of predator prey populations. Springer, J.A.J. Metz and O. Dekmann Eds., Berlin, Heidelberg, New York, Lecture Notes Biomath. 68 (1986). [Google Scholar]
  16. A. Hastings, Age-dependent predation is not a simple process. I. continuous time models. Theor. Popul. Biol. 23 (1983) 347–362. [CrossRef] [Google Scholar]
  17. S.P. Hastings, J.J. Tyson and D. Webster, Existence of periodic solutions for negative feedback cellular control systems. J. Differential Equations 25 (1977) 39–64. [CrossRef] [MathSciNet] [Google Scholar]
  18. M.J.B. Hauser, L.F. Olsen, T.V. Bronnikova and W.M. Schaffer, Routes to chaos in the peroxidase-oxidase reaction: period-doubling and period-adding. J. Phys. Chem. B 101 (1997) 5075–5083. [CrossRef] [Google Scholar]
  19. S.M. Henson, Leslie matrix models as “stroboscopic snapshots" of McKendrick PDE models. J. Math. Biol. 37 (1998) 309–328. [Google Scholar]
  20. Y.F. Hung, T.C. Yen and J.L. Chern, Observation of period-adding in an optogalvanic circuit. Phys. Lett. A 199 (1995) 70–74. [CrossRef] [Google Scholar]
  21. E.I. Jury, Inners and stability of dynamic systems. Wiley, New York (1974). [Google Scholar]
  22. K. Kaneko, On the period-adding phenomena at the frequency locking in a one-dimensional mapping. Progr. Theoret. Phys. 69 (1982) 403–414. [CrossRef] [MathSciNet] [Google Scholar]
  23. K. Kaneko, Similarity structure and scaling property of the period-adding phenomena. Progr. Theoret. Phys. 69 (1983) 403–414. [Google Scholar]
  24. M.J. Kishi, S. Kimura, H. Nakata and Y. Yamashita, A biomass-based model for the sand lance in Seto Znland Sea. Japan. Ecol. Model. 54 (1991) 247–263. [CrossRef] [Google Scholar]
  25. A. Lakmeche and O. Arino, Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls. Systems 7 (2000) 165–287. [Google Scholar]
  26. V. Laksmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations. World Scientific, Singapore (1989). [Google Scholar]
  27. P.H. Leslie, Some further notes on the use of matrices in certain population mathematics. Biometrika 35 (1948) 213–245. [MathSciNet] [Google Scholar]
  28. S.A. Levin, Age-structure and stability in multiple-age spawning populations. Springer-Verlag, T.L. Vincent and J.M. Skowrinski Eds., Berlin, Heidelberg, New York, Lecture Notes Biomath. 40 (1981) 21–45. [Google Scholar]
  29. S.A. Levin and C.P. Goodyear, Analysis of an age-structured fishery model. J. Math. Biol. 9 (1980) 245–274. [CrossRef] [MathSciNet] [Google Scholar]
  30. T. Lindstrom, Dependencies between competition and predation-and their consequences for initial value sensitivity. SIAM J. Appl. Math. 59 (1999) 1468–1486. [CrossRef] [MathSciNet] [Google Scholar]
  31. J.A.J. Metz and O. Diekmann, The dynamics of physiologically structured populations. Springer, Berlin, Heidelberg, New York, Lecture notes Biomath. 68 (1986). [Google Scholar]
  32. A.J. Nicholson, An outline of the dynamics of animal populations. Aust. J. Zool. 2 (1954) 9–65. [CrossRef] [Google Scholar]
  33. A.J. Nicholson, The self adjustment of populations to change. Cold Spring Harbor Symp. Quant. Biol. 22 (1957) 153–173. [Google Scholar]
  34. J.C. Panetta, A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment. Bull. Math. Biol. 58 (1996) 425–447. [Google Scholar]
  35. B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60 (1998) 1–26. [CrossRef] [PubMed] [Google Scholar]
  36. S.Y. Tang and L.S. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 44 (2002) 185–199. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  37. G. Uribe, On the relationship between continuous and discrete models for size-structured population dynamics. Ph.D. dissertation, Interdisciplinary program in applied mathematics, University of Arizona, Tucson, USA (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you